1. Ultra-Endurance Associated With Moderate Exercise in Rats Induces Cerebellar Oxidative Stress and Impairs Reactive GFAP Isoform Profile
- Author
-
Raphael Fabricio de Souza, Ricielle Lopes Augusto, Silvia Regina Arruda de Moraes, Fabio Borges de Souza, Lílian Vanessa da Penha Gonçalves, Danielle Dutra Pereira, Gisele Machado Magalhães Moreno, Fernanda Maria Araujo de Souza, and Belmira Lara da Silveira Andrade-da-Costa
- Subjects
oxidative stress ,central nervous system ,high-volume training ,catalase ,superoxide dismutase ,lipid peroxidation ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 - Abstract
Ultra-endurance (UE) race has been associated with brain metabolic changes, but it is still unknown which regions are vulnerable. This study investigated whether high-volume training in rodents, even under moderate intensity, can induce cerebellar oxidative and inflammatory status. Forty-five adult rats were divided into six groups according to a training period, followed or not by an exhaustion test (ET) that simulated UE: control (C), control + ET (C-ET), moderate-volume (MV) training and MV-ET, high-volume training (HV) and HV-ET. The training period was 30 (MV) and 90 (HV) min/day, 5 times/week for 3 months as a continuous running on a treadmill at a maximum velocity of 12 m/min. After 24 h, the ET was performed at 50% maximum velocities up to the animals refused to run, and then serum lactate levels were evaluated. Serum and cerebellar homogenates were obtained 24 h after ET. Serum creatine kinase (CK), lactate dehydrogenase (LDH), and corticosterone levels were assessed. Lipid peroxidation (LP), nitric oxide (NO), Interleukin 1β (IL-1β), and GFAP proteins, reduced and oxidized glutathione (GSH and GSSG) levels, superoxide dismutase (SOD) and catalase (CAT) activities were quantified in the cerebellum. Serum lactate concentrations were lower in MV-ET (∼20%) and HV-ET (∼40%) compared to the C-ET group. CK and corticosterone levels were increased more than ∼ twofold by HV training compared to control. ET increased CK levels in MV-ET vs. MV group (P = 0.026). HV induced higher LP levels (∼40%), but an additive effect of ET was only seen in the MV-ET group (P = 0.02). SOD activity was higher in all trained groups vs. C and C-ET (P < 0.05). CAT activity, however, was intensified only in the MV group (P < 0.02). The 50 kDa GFAP levels were enhanced in C-ET and MV-ET vs. respective controls, while 42 kDa (∼40%) and 39 kDa (∼26%) isoform levels were reduced. In the HV-ET group, the 50 KDa isoform amount was reduced ∼40–60% compared to the other groups and the 39 KDa isoform, increased sevenfold. LDH levels, GSH/GSSG ratio, and NO production were not modified. ET elevated IL-1β levels in the CT and MV groups. Data shows that cerebellar resilience to oxidative damage may be maintained under moderate-volume training, but it is reduced by UE running. High-volume training per se provoked systemic metabolic changes, cerebellar lipid peroxidation, and unbalanced enzymatic antioxidant resource. UE after high-volume training modified the GFAP isoform profile suggesting impaired astrocyte reactivity in the cerebellum.
- Published
- 2020
- Full Text
- View/download PDF