40 results on '"Fabien Momey"'
Search Results
2. WaveNet based architectures for denoising periodic discontinuous signals and application to friction signals.
- Author
-
Jules Rio, Fabien Momey, Christophe Ducottet, and Olivier Alata
- Published
- 2020
- Full Text
- View/download PDF
3. Reconstruction d’échantillons en microscopie holographique numérique en ligne
- Author
-
Fabien MOMEY, Thomas OLIVIER, and Corinne FOURNIER
- Abstract
La microscopie holographique en ligne permet l'observation d'échantillons microscopiques transparents, d’où son intérêt en microbiologie. L'information accessible de phase et d'absorption requiert des algorithmes de reconstruction robustes, à élaborer en lien étroit avec le design optique du montage. Ce chapitre propose de faire un état de l'art dans ce domaine, en s'appuyant principalement sur la méthodologie des problèmes inverses.
- Published
- 2023
- Full Text
- View/download PDF
4. Spline Driven: High Accuracy Projectors for Tomographic Reconstruction From Few Projections.
- Author
-
Fabien Momey, Loïc Denis, Catherine Burnier, éric Thiébaut, Jean-Marie Becker, and Laurent Desbat
- Published
- 2015
- Full Text
- View/download PDF
5. Unsupervised regularized inverse method for 3D reconstruction in tomographic diffractive microscopy
- Author
-
Laurence Denneulin, Fabien Momey, Matthieu Debailleul, Asemare M. Taddese, Nicolas Verrier, and Olivier Haeberlé
- Published
- 2022
- Full Text
- View/download PDF
6. Joint reconstruction of an in-focus image and of the background signal in in-line holographic microscopy
- Author
-
Frédéric Pinston, Loïc Denis, Nicolas Faure, Thomas Olivier, Fabien Momey, Anthony Berdeu, Corinne Fournier, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), and BIOMERIEUX
- Subjects
Computer science ,Holography ,02 engineering and technology ,01 natural sciences ,Signal ,law.invention ,010309 optics ,Optics ,Optical path ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,law ,0103 physical sciences ,Transmittance ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Electrical and Electronic Engineering ,ComputingMilieux_MISCELLANEOUS ,business.industry ,Mechanical Engineering ,Inverse problem ,021001 nanoscience & nanotechnology ,Sample (graphics) ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,0210 nano-technology ,Focus (optics) ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Digital holography - Abstract
In-line digital holography is a simple yet powerful tool to image absorbing and/or phase objects. However, the holograms of interest are corrupted by the background signal due to unwanted scattering elements located in the optical path. Using only two holograms of the same object, shifted to different locations, an inverse problems approach is applied to jointly estimate the complex transmittance of the sample and the contribution of the interferent background signal at the sensor plane. Experimental results with stained bacteria are presented and show improved reconstructions of the sample while also accounting for the background contribution.
- Published
- 2021
- Full Text
- View/download PDF
7. GSURE criterion for unsupervised regularized reconstruction in Tomographic Diffractive Microscopy
- Author
-
Laurence Denneulin, Fabien Momey, Dylan Brault, Laboratoire Hubert Curien [Saint Etienne] (LHC), and Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2021
8. WaveNet based architectures for denoising periodic discontinuous signals and application to friction signals
- Author
-
Olivier Alata, Christophe Ducottet, Fabien Momey, Jules Rio, Laboratoire Hubert Curien [Saint Etienne] (LHC), and Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Computer science ,Noise reduction ,020206 networking & telecommunications ,02 engineering and technology ,Function (mathematics) ,Classification of discontinuities ,Signal ,symbols.namesake ,Additive white Gaussian noise ,Sine wave ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,0202 electrical engineering, electronic engineering, information engineering ,symbols ,020201 artificial intelligence & image processing ,Algorithm ,ComputingMilieux_MISCELLANEOUS - Abstract
In this paper, we introduce a deep learning model based on Wavenet to denoise periodic signals containing some strong discontinuities, where the dataset used for training contains only synthetic data. We introduce a new cost function using a total variation term. The synthetic data which contain strong discontinuities, are generated as the sum of a sine wave, a square signal and a white gaussian noise. This simple model is very time-efficient to compute and allows us to perform data generation for each training of the architecture instead of physically storing the dataset. We specifically apply this model to real friction signals obtained through a rotating tribological system. We also compared our method with an improved TV denoising algorithm.
- Published
- 2021
- Full Text
- View/download PDF
9. GSURE criterion for unspervised regularized reconstruction in Tomographic Diffractive Microscopy
- Author
-
Fabien Momey, D. Brault, and L. Denneulin
- Subjects
Computer science ,3d image reconstruction ,Tomographic image reconstruction ,Microscopy ,Estimator ,Context (language use) ,Inverse problem ,Algorithm ,Regularization (mathematics) - Abstract
In the context of inverse problems based 3D image reconstruction for tomographic diffractive microscopy, we propose a simulation study for evaluating the potential of the Generalized Stein Unbiased Risk Estimator for automatically tuning the regularization parameters.
- Published
- 2021
- Full Text
- View/download PDF
10. Reconstruct-to-refocus: joint reconstruction of a biological sample and of calibration objects for accurate auto-focusing in digital holography
- Author
-
Corinne Fournier, Loïc Denis, Dylan Brault, Thomas Olivier, Ferréol Soulez, Anthony Berdeu, Fabien Momey, Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), National Astronomical Research Institute of Thailand (NARIT), Chulalongkorn University [Bangkok], Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Calibration (statistics) ,business.industry ,Computer science ,Joint reconstruction ,Computer vision ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Artificial intelligence ,business ,Sample (graphics) ,Digital holography - Abstract
We propose to reconstruct biological samples using calibration beads to perform numerical autofocusing in in-line holographic microscopy. The approach is based on a joint inversion using both a parametric and a regularized inversion method.
- Published
- 2021
- Full Text
- View/download PDF
11. Building an inverse approach for the reconstruction of in-line holograms: a parallel with Fienup’s phase retrieval technique (Conference Presentation)
- Author
-
Loïc Denis, Corinne Fournier, Thomas Olivier, Fabien Momey, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Labex PRIMES (ANR-11-LABX-0063), Projet Avenir Lyon Saint-Étienne 'Investissements d'Avenir' (ANR-11-IDEX-0007), and Région Auvergne-Rhône-Alpes
- Subjects
Optimization problem ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Convex optimization ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Inverse ,Iterative reconstruction ,Inverse problem ,Phase retrieval ,Gradient descent ,Focus (optics) ,Algorithm ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,ComputingMilieux_MISCELLANEOUS - Abstract
In this paper, we propose to present the general ingredients involved in an inverse problems methodology dedicated to the reconstruction of in-line holograms, and compare it with the classical Gercherg-Saxton or Fienup alternating projections strategies for phase retrieval [1,2,3]. An inverse approach [4,5] consists in retrieving an optimal solution to a reconstruction/estimation problem from a dataset, knowing an approximate model of its formation process. The problem is generally formulated as an optimization problem that aims at fitting the model to the data, while favoring a priori knowledge on the targeted information using regularizations and constraints. An appropriate resolution method has to be designed, based on a convex optimization framework. We develop the end-to-end inverse problems methodology on a case-study : the reconstruction of an in-line hologram of a collection of weakly dephasing objects. This simple problem allows us to explain current physical considerations (type of objects, diffraction physics) to derive the appropriate model, and to present classical constraints and regularizations that can be used in image reconstruction. Starting from these ingredients, we introduce a simple yet efficient method to solve this inverse problem, belonging to the class of proximal gradient algorithms [6,7]. A special focus is made on the connections between the numerous alternating projections strategies derived from Fienup’s phase retrieval technique and the inverse problems framework. In particular, an interpretation of Fienup’s algorithm as iterates of a proximal gradient descent for a particular cost function is given. We discuss the advantages provided by the inverse problems methodology. We illustrate both strategies on reconstructions from simulated and experimental holograms of micrometric beads. The results show that the transition from alternating projection techniques to the inverse problems formulation is straightforward and advantageous.
- Published
- 2020
12. From Fienup's phase retrieval techniques to regularized inversion for in-line holography: tutorial
- Author
-
Corinne Fournier, Thomas Olivier, Fabien Momey, Loïc Denis, Laboratoire Hubert Curien [Saint Etienne] (LHC), Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS), Centre de Microscopie Confocale Multiphotonique (CMCM), Université Jean Monnet [Saint-Étienne] (UJM), Labex PRIMES (ANR-11-LABX-0063), Projet Avenir Lyon Saint-Étienne 'Investissements d'Avenir' (ANR-11-IDEX-0007), and Région Auvergne-Rhône-Alpes
- Subjects
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Computer science ,Holography ,Image processing ,01 natural sciences ,law.invention ,010309 optics ,Optics ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,law ,0103 physical sciences ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Signal processing ,business.industry ,Reconstruction algorithm ,Inverse problem ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Iterated function ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Computer Vision and Pattern Recognition ,Gradient descent ,business ,Phase retrieval ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Algorithm - Abstract
International audience; This paper includes a tutorial on how to reconstruct in-line holograms using an inverse problems approach, starting with modeling the observations, selecting regularizations and constraints, and ending with the design of a reconstruction algorithm. A special focus is made on the connections between the numerous alternating projection strategies derived from Fienup's phase retrieval technique and the inverse problems framework. In particular, an interpretation of Fienup's algorithm as iterates of a proximal gradient descent for a particular cost function is given. Reconstructions from simulated and experimental holograms of micrometric beads illustrate the theoretical developments. The results show that the transition from alternating projection techniques to the inverse problems formulation is straightforward and advantageous.
- Published
- 2019
- Full Text
- View/download PDF
13. JOINT RECONSTRUCTION IN IN-LINE HOLOGRAPHY COMBINING PARAMETRIC AND NON-PARAMETRIC INVERSE APPROACHES: APPLICATION TO FLUID MECHANICS
- Author
-
Anthony Berdeu, Olivier Flasseur, Loic Denis, Fabien Momey, Méès Loïc, Nathalie Grosjean, Corinne Fournier, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mie propagation ,Inverse problem approach ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Rayleigh-Sommerfeld propagation - Abstract
International audience; In-line digital holography is a simple and powerful tool to image absorbing and/or phase objects in numerous fields such as crystallography, biology or fluid mechanics. Nevertheless, this kind of interference imaging technique leads to a loss of the phase of the complex wave front on the sensor. This lack of phase information can be critical in the reconstruction process. Thus, the simplicity of the setup must be balanced by dedicated reconstruction algorithm to retrieve the object from its hologram, such as inverse approaches. In the case of simple objects for which an analytical model of propagation is known, parametric algorithms are very effective. But these approaches fail at reconstructing more complex objects, where non-parametric solutions must be involved. This may lead to a loss in precision or specificity. In this work we propose a new approach combining these two methods to take benefits from their own advantages. The object to reconstruction is split in two subparts. A part is described by a parametric model. The other part of the object is simulated via a non-parametric model. These two parts which interfere are jointly considered in the reconstruction algorithm by alternating parametric and non-parametric procedures. We apply this new technique to evaporating droplets where the high contrast fringes produced by the droplets tend to mask the fringes produced by the plume. With our method, both the droplet and the plume are jointly reconstructed.
- Published
- 2018
14. Improving color lensless microscopy reconstructions by self-calibration
- Author
-
Corinne Fournier, Loïc Denis, Frédéric Jolivet, Olivier Flasseur, and Fabien Momey
- Subjects
Physics ,Bayer filter ,Spectrometer ,business.industry ,Holography ,Field of view ,Iterative reconstruction ,Laser ,law.invention ,Optics ,law ,Calibration ,business ,Digital holography - Abstract
Lensless color microscopy is a recent 3D quantitative imaging method allowing to retrieve physical parameters characterizing microscopic objects spread in a volume. The main advantages of this technique are related to its simplicity, compactness, low sensitivity of the setup to vibrations and the possibility to accurately characterize objects. The cost-effectiveness of the method can be further increased using low-end laser diodes as coherent sources and CMOS color sensor equipped with a Bayer filter array. However, the central wavelength delivered by this type of laser is generally known only with a limited precision and can evolve because of its dependence on temperature and power supply voltage. In addition, Bayer-type filters of conventional color sensors are not very selective, resulting in spectral mixing (crosstalk phenomenon) of signals from each color channel. Ignoring these phenomena leads to significant errors in holographic reconstructions. We have proposed a maximum likelihood estimation method to calibrate the setup (central wavelength of the laser sources and spectral mixing introduced by the Bayer filters) using spherical objects naturally present in the field of view or added (calibration objects). This calibration method provides accurate estimates of the wavelengths and of the crosstalk, with an uncertainty comparable to that of a high-resolution spectrometer. To perform the image reconstruction from color holograms following the self-calibration of the setup, we describe a regularized inversion method that includes a linear hologram formation model, sparsity constraints and an edge-preserving regularization. We show on holograms of calibrated objects that the self-calibration of the setup leads to an improvement of the reconstructions.
- Published
- 2018
- Full Text
- View/download PDF
15. Quantitative phase retrieval reconstruction from in-line hologram using a new proximal operator: application to microscopy of bacteria and tracking of droplets
- Author
-
Loïc Méès, Fabien Momey, Frédéric Jolivet, Corinne Fournier, Frédéric Pinston, Loïc Denis, Nicolas Faure, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and BIOMERIEUX
- Subjects
Image formation ,Optimization problem ,Computer science ,Holography ,Reconstruction algorithm ,02 engineering and technology ,Iterative reconstruction ,Inverse problem ,021001 nanoscience & nanotechnology ,01 natural sciences ,law.invention ,010309 optics ,[SPI]Engineering Sciences [physics] ,law ,0103 physical sciences ,0210 nano-technology ,Phase retrieval ,Algorithm ,Digital holography - Abstract
International audience; Phase retrieval reconstruction is a central problem in digital holography, with various applications in microscopy, biomedical imaging, fluid mechanics. In an in-line configuration, the particular difficulty is the non-linear relation between the object phase and the recorded intensity of the holograms, leading to high indeterminations in the reconstructed phase. Thus, only efficient constraints and a priori information, combined with a finer model taking into account the non-linear behaviour of image formation, will allow to get a relevant and quantitative phase reconstruction. Inverse problems approaches are well suited to address these issues, only requiring a direct model of image formation and allowing the injection of priors and constraints on the objects to reconstruct, and hence offer good warranties on the optimality of the expected solution. In this context, following our previous works in digital in-line holography, we propose a regularized reconstruction method that includes several physicallygrounded constraints such as bounds on transmittance values, maximum/minimum phase, spatial smoothness or the absence of any object in parts of the field of view. To solve the non-convex and non-smooth optimization problem induced by our modeling, a variable splitting strategy is applied and the closed-form solution of the sub-problem (the so-called proximal operator) is derived. The resulting algorithm is efficient and is shown to lead to quantitative phase estimation of micrometric objects on reconstructions of in-line holograms simulated with advanced models using Mie theory. Then we discuss the quality of reconstructions from experimental inline holograms obtained from two different applications of in-line digital holography: tracking of an evaporating droplet (size~100μm) and microscopy of bacterias (size~1μm). The reconstruction algorithm and the results presented in this proceeding have been initially published in [Jolivet et al., 2018].
- Published
- 2018
- Full Text
- View/download PDF
16. Regularized reconstruction of absorbing and phase objects from a single in-line hologram, application to fluid mechanics and micro-biology
- Author
-
Nicolas Faure, Frédéric Pinston, Loïc Méès, Jean-Louis Marié, Corinne Fournier, Frédéric Jolivet, Loïc Denis, Nathalie Grosjean, Fabien Momey, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and bioMérieux - Clinical Unit
- Subjects
Diffraction ,Inverse problems ,Mie scattering ,Fast Fourier transform ,Holography ,Physics::Optics ,02 engineering and technology ,Microbiology ,01 natural sciences ,law.invention ,Image reconstruction techniques ,Physical Phenomena ,010309 optics ,Optics ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,law ,Image Interpretation, Computer-Assisted ,0103 physical sciences ,Escherichia coli ,Staphylococcus epidermidis ,Phase retrieval ,Physics ,Microscopy ,business.industry ,Digital holography ,Fluid mechanics ,Equipment Design ,Inverse problem ,Image Enhancement ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Body Fluids ,0210 nano-technology ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Algorithms - Abstract
International audience; Reconstruction of phase objects is a central problem in digital holography, whose various applications include microscopy, biomedical imaging, and fluid mechanics. Starting from a single in-line hologram, there is no direct way to recover the phase of the diffracted wave in the hologram plane. The reconstruction of absorbing and phase objects therefore requires the inversion of the non-linear hologram formation model. We propose a regularized reconstruction method that includes several physically-grounded constraints such as bounds on transmittance values, maximum/minimum phase, spatial smoothness or the absence of any object in parts of the field of view. To solve the non-convex and non-smooth optimization problem induced by our modeling, a variable splitting strategy is applied and the closed-form solution of the sub-problem (the so-called proximal operator) is derived. The resulting algorithm is efficient and is shown to lead to quantitative phase estimation on reconstructions of accurate simulations of in-line holograms based on the Mie theory. As our approach is adaptable to several in-line digital holography configurations, we present and discuss the promising results of reconstructions from experimental in-line holograms obtained in two different applications: the tracking of an evaporating droplet (size ∼ 100µm) and the microscopic imaging of bacteria (size ∼ 1µm).
- Published
- 2018
- Full Text
- View/download PDF
17. 3D lens-free time-lapse microscopy for 3D cell culture
- Author
-
Jean-Marc Dinten, Cédric Allier, Anthony Berdeu, Nathalie Picollet-D'hahan, Xavier Gidrol, Fabien Momey, Bastien Laperrousaz, Thomas Bordy, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Berdeu, Anthony
- Subjects
Materials science ,Super-resolution microscopy ,business.industry ,Scanning confocal electron microscopy ,02 engineering and technology ,Inverse problem ,021001 nanoscience & nanotechnology ,01 natural sciences ,Time-lapse microscopy ,law.invention ,010309 optics ,Lens (optics) ,3D cell culture ,Optics ,law ,0103 physical sciences ,Microscopy ,Digital holographic microscopy ,0210 nano-technology ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; We propose a new imaging platform based on lens-free time-lapse microscopy for 3D cell culture and its dedicated algorithm lying on a fully 3D regularized inverse problem approach. First 3D + t results are presented.
- Published
- 2017
- Full Text
- View/download PDF
18. Accurate transaxial region-of-interest reconstruction in helical CT?
- Author
-
Laurent Desbat, Fabien Momey, Frédéric Noo, Simon Rit, Rolf Clackdoyle, Gestes Medico-chirurgicaux Assistés par Ordinateur (TIMC-IMAG-GMCAO), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Utah Center for Advanced Imaging Technologies, University of Utah, Salt Lake City, USA, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard [Lyon], ANR-12-BS01-0018,DROITE,Dynamic Reconstruction of Region Of Interest Tomography. Theory and Experiments(2012), Momey, Fabien, BLANC - Dynamic Reconstruction of Region Of Interest Tomography. Theory and Experiments - - DROITE2012 - ANR-12-BS01-0018 - BLANC - VALID, Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Iterative method ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Physics::Medical Physics ,[INFO.INFO-IM] Computer Science [cs]/Medical Imaging ,Boundary (topology) ,Iterative reconstruction ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,symbols.namesake ,0302 clinical medicine ,Region of interest ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Cylinder ,Radiology, Nuclear Medicine and imaging ,Computer vision ,0101 mathematics ,Instrumentation ,Mathematics ,ROI Tomography ,Tomographic reconstruction ,business.industry ,Atomic and Molecular Physics, and Optics ,Helical CT ,010101 applied mathematics ,Transverse plane ,[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging ,Computer Science::Graphics ,Computer Science::Computer Vision and Pattern Recognition ,symbols ,Artificial intelligence ,Hilbert transform ,Reconstruction ,business - Abstract
International audience; In conventional helical computed tomography (CT), the field-of-view is a cylinder centered on the axis of the helix. Here, we consider the situation where all measurement lines are blocked except those intersecting a small cylindrical region-ofinterest (ROI) not necessarily centered on the axis of the system. We address the question of image reconstruction inside the ROI. The patient boundary is assumed known, and we avoid the “interior problem” by assuming that the ROI includes part of the patient boundary. By applying analytic image reconstruction theory, we show that the entire cylindrical ROI can be reconstructed provided the pitch of the helix does not violate the well-known Tam-Danielsson detector condition. Using an iterative algorithm, we performed ROI reconstruction from simulated phantom data and from real patient data, and compared the results with fullfield reconstructions. Visually, the ROI reconstructed images perfectly matched the full-field reconstructions. However, there were small quantitative discrepancies near the interior boundaries of the ROIs, which we attribute to the known reduced stability at onesideoftheinversetruncatedHilberttransform.Inconclusion, we have demonstrated mathematically that accurate transverse ROI reconstruction is possible for helical CT, although care must be taken near the interior boundary to achieve quantitative accuracy.
- Published
- 2017
- Full Text
- View/download PDF
19. Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy
- Author
-
Thomas Bordy, Anthony Berdeu, Jean-Marc Dinten, Cédric Allier, Fabien Momey, Bastien Laperrousaz, Nathalie Picollet-D'hahan, Xavier Gidrol, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire Hubert Curien [Saint Etienne] (LHC), Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS), Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Momey, Fabien
- Subjects
Diffraction ,Computer science ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Materials Science (miscellaneous) ,Phase contrast microscopy ,02 engineering and technology ,Iterative reconstruction ,01 natural sciences ,Industrial and Manufacturing Engineering ,Time-lapse microscopy ,law.invention ,010309 optics ,symbols.namesake ,Optics ,law ,0103 physical sciences ,Microscopy ,Business and International Management ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing ,business.industry ,Resolution (electron density) ,OCIS codes: (090.1970) Diffractive optics ,(090.1995) Digital holography ,(100.3010) Image reconstruction techniques ,(170.0110) Imaging systems ,(180.6900) Three-dimensional microscopy ,Inverse problem ,021001 nanoscience & nanotechnology ,[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging ,Fourier transform ,symbols ,0210 nano-technology ,Phase retrieval ,business ,Algorithm ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Digital holography - Abstract
International audience; We propose a three-dimensional (3D) imaging platform based on lens-free microscopy to perform multiangle acquisitions on 3D cell cultures embedded in extracellular matrices. Lens-free microscopy acquisitions present some inherent issues such as the lack of phase information on the sensor plane and a limited angular coverage. We developed and compared three different algorithms based on the Fourier diffraction theorem to obtain fully 3D reconstructions. These algorithms present an increasing complexity associated with a better reconstruction quality. Two of them are based on a regularized inverse problem approach. To compare the reconstruction methods in terms of artefact reduction, signal-to-noise ratio, and computation time, we tested them on two experimental datasets: an endothelial cell culture and a prostate cell culture grown in a 3D extracellular matrix with large reconstructed volumes up to ∼5 mm3∼5 mm3 with a resolution sufficient to resolve isolated single cells. The lens-free reconstructions compare well with standard microscopy.
- Published
- 2017
- Full Text
- View/download PDF
20. Reconstruction of in-line holograms: combining model-based and regularized inversion
- Author
-
Corinne Fournier, Anthony Berdeu, Loïc Méès, Nathalie Grosjean, Thomas Olivier, Loïc Denis, Fabien Momey, and Olivier Flasseur
- Subjects
Wavefront ,Diffraction ,Computer science ,business.industry ,Holography ,Physics::Optics ,Reconstruction algorithm ,02 engineering and technology ,Iterative reconstruction ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Ptychography ,law.invention ,010309 optics ,Optics ,law ,0103 physical sciences ,Image sensor ,0210 nano-technology ,Phase retrieval ,business ,Algorithm ,Digital holography - Abstract
In-line digital holography is a simple yet powerful tool to image absorbing and/or phase objects. Nevertheless, the loss of the phase of the complex wavefront on the sensor can be critical in the reconstruction process. The simplicity of the setup must thus be counterbalanced by dedicated reconstruction algorithms, such as inverse approaches, in order to retrieve the object from its hologram. In the case of simple objects for which the diffraction pattern produced in the hologram plane can be modeled using few parameters, a model fitting algorithm is very effective. However, such an approach fails to reconstruct objects with more complex shapes, and an image reconstruction technique is then needed. The improved flexibility of these methods comes at the cost of a possible loss of reconstruction accuracy. In this work, we combine the two approaches (model fitting and regularized reconstruction) to benefit from their respective advantages. The sample to be reconstructed is modeled as the sum of simple parameterized objects and a complex-valued pixelated transmittance plane. These two components jointly scatter the incident illumination, and the resulting interferences contribute to the intensity on the sensor. The proposed hologram reconstruction algorithm is based on alternating a model fitting step and a regularized inversion step. We apply this algorithm in the context of fluid mechanics, where holograms of evaporating droplets are analyzed. In these holograms, the high contrast fringes produced by each droplet tend to mask the diffraction pattern produced by the surrounding vapor wake. With our method, the droplet and the vapor wake can be jointly reconstructed.
- Published
- 2019
- Full Text
- View/download PDF
21. Numerical Reconstruction of Holograms Using Inverse Problems Approaches
- Author
-
Fournier, Corinne, primary, Olivier, Flasseur, additional, Anthony, Berdeu, additional, Fabien, Momey, additional, Thomas, Olivier, additional, and Loïc, Denis, additional
- Published
- 2019
- Full Text
- View/download PDF
22. Reconstruction of in-line holograms combining model fitting and image-based regularized inversion
- Author
-
Anthony, Berdeu, primary, Olivier, Flasseur, additional, Loïc, Méès, additional, Loïc, Denis, additional, Fabien, Momey, additional, Thomas, Olivier, additional, Nathalie, Grosjean, additional, and Corinne, Fournier, additional
- Published
- 2019
- Full Text
- View/download PDF
23. Fan-Beam Reconstruction Under Motion and Data Truncation: Comparing Analytic and Iterative Approaches
- Author
-
Jan Hoskovec, Fabien Momey, Rolf Clackdoyle, Laurent Desbat, Simon Rit, Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS ), Université Jean Monnet [Saint-Étienne] ( UJM ) -Hospices Civils de Lyon ( HCL ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Hospices Civils de Lyon ( HCL ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Centre Léon Bérard [Lyon], Laboratoire Hubert Curien [Saint Etienne] ( LHC ), Université Jean Monnet [Saint-Étienne] ( UJM ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut d'Optique Graduate School ( IOGS ), Gestes Medico-chirurgicaux Assistés par Ordinateur ( TIMC-IMAG-GMCAO ), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 ( TIMC-IMAG ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ) -IMAG-VetAgro Sup ( VAS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ) -IMAG-VetAgro Sup ( VAS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), ANR-12-BS01-0018,DROITE,Dynamic Reconstruction of Region Of Interest Tomography. Theory and Experiments ( 2012 ), Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Gestes Medico-chirurgicaux Assistés par Ordinateur (TIMC-IMAG-GMCAO), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-12-BS01-0018,DROITE,Dynamic Reconstruction of Region Of Interest Tomography. Theory and Experiments(2012), Rit, Simon, BLANC - Dynamic Reconstruction of Region Of Interest Tomography. Theory and Experiments - - DROITE2012 - ANR-12-BS01-0018 - BLANC - VALID, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging ,[ INFO.INFO-IM ] Computer Science [cs]/Medical Imaging ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,[INFO.INFO-IM] Computer Science [cs]/Medical Imaging ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Index Terms-Tomography ,Dynamic Tomography ,Region-Of-Interest Tomography ,Tomography ,[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging - Abstract
International audience; In this paper we propose comparisons and correlations between analytic and iterative fan-beam reconstruction approaches when object's rigid motion and data truncation occur during a circular scan. Based on our recent work presenting an exact analytic reconstruction method, we are able to predict the field of theoretically reconstructible points and transform the problem from a dynamic to a static point a view where the source trajectory is virtually modified taking into account the known rigid motion. We implement the iterative reconstruction as the convex minimization of a data-fidelity term under non-negativity constraint and regularization to solve this virtually static inverse problem. We compare the reconstructed field of view by the two methods on 2D fan-beam Shepp-Logan phantom simulations. Our results show that both methods validate the predicted reconstructible zone and are in good correlation in terms of reconstruction quality. The iterative reconstruction also demonstrates that in certain cases it is possible to recover structures beyond the analytic strict frontier of reconstructibilty.
- Published
- 2016
24. Lensfree diffractive tomography for the imaging of 3D cell cultures
- Author
-
Xavier Gidrol, J.-M. Dinten, Fabien Momey, F. Kermarrec Marcel, Anthony Berdeu, Thomas Bordy, Nathalie Picollet-D'hahan, Cédric Allier, Laboratoire Hubert Curien / Eris, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Biomicrotechnologie et génomique fonctionnelle (BIOMICS), Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Berdeu, Anthony, Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), and Laboratoire Hubert Curien (LHC)
- Subjects
0301 basic medicine ,(1806900) Three-dimensional mi-croscopy References and links ,Microscope ,[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,Computer science ,Holography ,OCIS codes: (0901970) Diffractive optics ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,01 natural sciences ,Article ,law.invention ,010309 optics ,03 medical and health sciences ,Optics ,law ,0103 physical sciences ,Microscopy ,[SDV.BDD] Life Sciences [q-bio]/Development Biology ,Organoid ,(1700110) Imaging systems ,[SDV.BC] Life Sciences [q-bio]/Cellular Biology ,[SDV.BDD]Life Sciences [q-bio]/Development Biology ,business.industry ,Reconstruction algorithm ,Atomic and Molecular Physics, and Optics ,(1003010) Im-age reconstruction techniques ,(0901995) Digital holography ,030104 developmental biology ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Tomography ,business ,Phase retrieval ,Digital holography ,Biotechnology - Abstract
International audience; New microscopes are needed to help realize the full potential of 3D organoid culture studies bygathering large quantitative and systematic data over extended period of time while preserving the integrityof the living sample. On another hand, lensfree video microscopy is addressing these needs in the context of2D cell culture, providing label-free and non-phototoxic acquisition of large datasets. As scientistsroutinely adopt 3D culture techniques, the new challenging task is to extend lensfree microscopy techniquesto 3D structures.In order to image such large volume while preserving the ability to catch every single cell, we proposenew imaging platforms based on lensfree microscopy. We have built lensfree diffractive tomography setupsperforming multi-angle acquisitions of 3D organoid culture embedded in Matrigel® and developed adedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem.With a first prototype we have been able to reconstruct a 3D volume as large as 21.5 mm^3 of a 3Dorganoid culture of prostatic RWPE1 cells in Matrigel® showing the ability of these cells to assemble in 3Dintricate cellular network at the mesoscopic scale. Comparisons with 2D images showed that it ispossible to detect single cells isolated from the main cellular structure.From results of the first prototype and numerical simulations, a second prototype wasdesigned to improve the reconstructions quality, especially on the vertical axis. First results on dust andbubbles lying at the bottom of a Petri® dish are promising.The adaptation of lensfree microscopy techniques to 3D organoid cultures imaging and thepresentation of the associated algorithms are the scopes of the present communication.
- Published
- 2016
- Full Text
- View/download PDF
25. 3D LENSFREE MICROSCOPY FOR 3D CELL CULTURE
- Author
-
Anthony Berdeu, Fabien Momey, Jean-Marc Dinten, Nathalie Picollet-d'Hahan, Xavier Gidrol, cedric allier, Berdeu, Anthony, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Laboratoire d'Exploration Fonctionnelle des Génomes (LEFG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), and Laboratoire Hubert Curien (LHC)
- Subjects
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
National audience; New microscopes are needed to help realize the full potential of 3D organoid culture studies by gathering large quantitative and systematic data over extended period of time while preserving the integrity of the living sample. In order to reconstruct large volume while keeping the ability to catch every single cell, we propose new imaging platforms based on lensfree microscopy, a technic which is addressing these needs in the context of 2D cell culture, providing label-free and non-phototoxic acquisition of large datasets. We have built lensfree diffractive tomography setups performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel ® and developed dedicated 3D holographic reconstruction algorithms based on the Fourier diffraction theorem. Nonetheless, holographic setups do not record the phase of the incident wavefront and the biological samples in Petri dish strongly limit the angular coverage. These limitations introduces numerous artefacts in the sample reconstruction. We developed several methods to overcome them, such as multi wavelength imaging or iterative phase retrieval. The most promising technic currently developed is based on a regularized inverse problem approach directly performed on the 3D volume to reconstruct. 3D reconstructions were realized on several complex samples such as 3D networks or spheroids embedded in capsules with large reconstructed volumes up to ~25 mm^3 while still being able to identify single cells. To our knowledge, this is the first time that such an inverse problem approach is implemented in the context of lensfree diffractive tomography enabling to reconstruct large volume of unstained biological samples.
- Published
- 2016
26. Lensfree microscopy: A new framework for the imaging of viruses, bacteria, cells and tissue
- Author
-
Y. Hennequin, L. Hervé, Jean-Guillaume Coutard, Olivier Cioni, Thomas Bordy, Fabrice Navarro, Cédric Allier, Sophie Morel, Fabien Momey, J.-M. Dinten, S. Vinjimore Kesavan, and Anthony Berdeu
- Subjects
Digital sensors ,CMOS sensor ,Materials science ,Pixel ,CMOS ,law ,Microscopy ,Imaging technology ,Holography ,Nanotechnology ,Dot pitch ,law.invention - Abstract
Lensfree imaging is an emerging microscopy technique based on in-line holography as invented by Gabor in 1948. Albeit the existence of the method since decades, the recent development of digital sensors, helped the realization of its full potential. Over the recent years, innovations and improvements in CMOS imaging technology design and fabrication have allowed to decrease the pixel pitch down to ∼1μm and the number of pixels has dramatically increased up to 250 million of pixels. As a result, the performance of lensfree microscopy, which features a bare CMOS sensor without any magnification optics, have tremendously increased while keeping the design simple, robust, and at a reasonable low cost. The detection ability improved from 10 μm (cell) in 2009, to 1 μm (bacteria) in 2010, down to 100 nm beads in 2012, paving the way to the detection of viruses in 2013.
- Published
- 2015
- Full Text
- View/download PDF
27. Lensfree video microscopy: high throughput monitoring and cell tracking of 2D cell cultures
- Author
-
Olivier Cioni, Thomas Bordy, Cédric Allier, Fabien Momey, Xavier Gidrol, L. Hervé, J.-M. Dinten, Fabrice Navarro, Mathilde Menneteau, Eric Sulpice, Sophie Morel, S. Vinjimore Kesavan, D. Freida, and Bernard Chalmond
- Subjects
Standard cell ,Microscope ,Cell division ,business.industry ,Cell ,Video microscopy ,Biology ,Frame rate ,law.invention ,medicine.anatomical_structure ,law ,Cell culture ,medicine ,Computer vision ,Artificial intelligence ,Cell adhesion ,business ,Biomedical engineering - Abstract
In order to extend the analysis of the datasets produced by lensfree video microscopy we have implemented a cell tracking algorithm to combine and correlate cell motility to the previously devised metrics to quantify e.g. cell adhesion and spreading, cell division, and cell death. In this paper we present the assessment of these new methodology on experiments involving three different cell lines, namely 3T3 fibroblast cells, primary HUVEC cells and macrophage THP1 cells. We demonstrate that the good spatial resolution and the fast frame rate obtained with of our lensfree video microscope allows standard cell tracking algorithm to be computed. The results is the possibility to analyze thousands of cells successfully tracked over tens of hours. The results is the possibility to compare different cell cultures in terms of e.g. cell motility and cell confinement ration. Ultimately we managed to measure the doubling time at single cell level over a large number of N=235 cells tracked over two days.
- Published
- 2015
- Full Text
- View/download PDF
28. Dynamics of cell and tissue growth acquired by means of extended field of view lensfree microscopy
- Author
-
Jean-Guillaume Coutard, Thomas Bordy, Cédric Allier, Fabrice Navarro, Mathilde Menneteau, Fabien Momey, J.-M. Dinten, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Ferme expérimentale de Thorigné d'Anjou, Centre de Recherche en Economie et Statistique [Bruz] (CREST), Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI), Laboratoire Hubert Curien (LHC), and Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,CMOS sensor ,Computer science ,business.industry ,Image processing ,Video microscopy ,Field of view ,Velocimetry ,Atomic and Molecular Physics, and Optics ,Article ,03 medical and health sciences ,030104 developmental biology ,Optics ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Computer vision ,Artificial intelligence ,Image sensor ,Raster scan ,business ,Digital holography ,ComputingMilieux_MISCELLANEOUS ,Biotechnology - Abstract
In this paper, we discuss a new methodology based on lensfree imaging to perform wound healing assay with unprecedented statistics. Our video lensfree microscopy setup is a simple device featuring only a CMOS sensor and a semi coherent illumination system. Yet it is a powerful mean for the real-time monitoring of cultivated cells. It presents several key advantages, e.g. integration into standard incubator, compatibility with standard cell culture protocol, simplicity and ease of use. It can perform the follow-up in a large field of view (25 mm(2)) of several crucial parameters during the culture of cells i.e. their motility, their proliferation rate or their death. Consequently the setup can gather large statistics both in space and time. Here we uses this facility in the context of wound healing assay to perform label-free measurements of the velocities of the fronts of proliferation of the cell layer as a function of time by means of particle image velocimetry (PIV) processing. However, for such tissue growth experiments, the field of view of 25 mm(2) remains not sufficient and results can be biased depending on the position of the device with respect to the recipient of the cell culture. Hence, to conduct exhaustive wound healing assays, we propose to enlarge the field of view up to 10 cm(2) through a raster scan, by moving the source/sensor with respect to the Petri dish. We have performed acquisitions of wound healing assay (keratinocytes HaCaT) both in real-time (25 mm(2)) and in final point (10 cm(2)) to assess the combination of velocimetry measurements and final point wide field imaging. In the future, we aim at combining directly our extended field of view acquisitions (10 cm(2)) with real time ability inside the incubator.
- Published
- 2015
- Full Text
- View/download PDF
29. Dynamics of cell and tissue growth acquired by means of 25 mm2to 10 cm2lens-free imaging
- Author
-
Cédric Allier, Mathilde Menneteau, Fabien Momey, Thomas Bordy, Fabrice Navarro, J.-M. Dinten, and Jean-Guillaume Coutard
- Subjects
CMOS sensor ,business.industry ,Computer science ,Cell ,law.invention ,Lens (optics) ,HaCaT ,medicine.anatomical_structure ,Optics ,law ,Cell culture ,Microscopy ,medicine ,Computer vision ,Wound healing assay ,Artificial intelligence ,business ,Wound healing - Abstract
In this paper, we discuss a new methodology based on lens-free imaging to perform wound healing assay with unprecedented statistics. Our video lens-free microscopy setup is a simple optical system featuring only a CMOS sensor and a semi coherent illumination system. Yet it is a powerful means for the real-time monitoring of cultivated cells. It presents several key advantages, e.g., integration into standard incubator, compatibility with standard cell culture protocol, simplicity and ease of use. It can perform the follow-up in a large field of view (25 mm 2 ) of several crucial parameters during the culture of cells i.e. their motility, their proliferation rate or their death. Consequently the setup can gather large statistics both in space and time. But in the case of tissue growth experiments, the field of view of 25 mm 2 remains not sufficient and results can be biased depending on the position of the device with respect to the recipient of the cell culture. Hence, to conduct exhaustive wound healing assay, here we propose to enlarge the field of view up to 10 cm 2 through two different approaches. The first method consists in performing a scan of the cell culture by moving the source/sensor couple and then stitch the stack of images. The second is to make an acquisition by scanning with a line scan camera. The two approaches are compared in term of resolution, complexity and acquisition time. Next we have performed acquisitions of wound healing assay (keratinocytes HaCaT) both in real-time (25 mm 2 ) and in final point (10 cm 2 ) to assess the combination of these two complementary modalities. In the future, we aim at combining directly super wide field of view acquisitions (>10 cm 2 ) with real time ability inside the incubator.
- Published
- 2015
- Full Text
- View/download PDF
30. Tomographie diffractive sans lentille appliquée à la culture cellulaire 3D
- Author
-
Anthony Berdeu, Fabien Momey, Nathalie Picollet-d'Hahan, Frédérique Marcel, Xavier Gidrol, Thomas Bordy, Jean-Marc Dinten, cedric allier, Berdeu, Anthony, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Conception pour Imageurs et Biopuces (LCIB), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), and Laboratoire Hubert Curien (LHC)
- Subjects
[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics] ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] - Abstract
National audience; The study of in vitro cell populations is a major concern for biologists in the realms of drug screening and oncology for example. With standard microscopy techniques, crucial information at the mesoscopic scale is still difficult to reach due to reduced field of view and complexity to monitor cell behaviors in real time over large periods of time. Lensfree video microscopy has already overcome these difficulties in the context of 2D cell biology. Based on the in-line holography principle, it puts cells directly between a coherent light source and a sensor allowing large field of view, e.g. 30 mm 2. With the growth of 3D cell cultures, the new challenging task is to extend this imaging technique to acquisitions and 3D reconstructions of cellular culture. For this purpose, we have developed an experimental optical bench dedicated to lensfree diffractive tomography and studied several 3D reconstruction algorithms on acquisitions of 3D prostatic cell cultures.
- Published
- 2015
31. VIDÉO-MICROSCOPIE SANS LENTILLE POUR LA BIOLOGIE CELLULAIRE 2D ET 3D
- Author
-
Fabien Momey, cedric allier, Olivier Cioni, Jean-Guillaume Coutard, Lionel Hervé, Vinjimore Kesavan Srikanth, Jean-Marc Dinten, Nathalie Picollet-D 'Hahan, Monika Dolega, Xavier Gidrol, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Eyraud, Philippe, Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
[SPI]Engineering Sciences [physics] ,[SPI] Engineering Sciences [physics] ,microscopie sans lentille ,Holographie numérique ,culture cellulaire 2D ,culture cellulaire 3D - Abstract
International audience; L'étude de l'évolution et de l'organisation de populations de cellules cultivées in vitro intéresse les biologistes depuis plusieurs dizaines d'années. À ces fins, d'importants progrès ont été réalisés dans les méthodes d'imagerie à l'échelle microscopique. Cependant, certaines informations demeurent inaccessibles, notamment à l'échelle mésoscopique, en raison du champ de vue réduit, ainsi que la complexité et le coût pour réaliser des acquisitions hors incubateur en temps réel sur de longues périodes. En réponse à ces limitations, nous avons développé la vidéo-microscopie sans lentille, en plaçant directement les cellules vivantes sur un capteur numérique en regard d'une illumination cohérente selon le principe de l'holographie en ligne. Cette technique permet l'observation d'une culture cellulaire sur un large champ de vue (24 mm² soit plusieurs dizaines de milliers de cellules), et ce à l'intérieur même de l'incubateur, autorisant de surcroît des acquisitions dynamiques couvrant des périodes allant de quelques jours à plusieurs semaines. À partir des images holographiques brutes acquises, nous pouvons remonter aux images refocalisées par reconstruction numérique jusqu'à une résolution de 2µm. Le traitement de ces images donne accès à des niveaux d'information quantifiables allant de la cellule unique à l'organisation inter-individus de la population. Avec des premières études sur des cultures standard de cellules sur substrat 2D, nous sommes aujourd'hui en mesure, avec notre dispositif et la force de l'imagerie holographique, d'explorer et d'étudier la vie cellulaire en 3D, nous rapprochant un peu plus de la réalité physiologique des phénomènes biologiques.
- Published
- 2014
32. High-throughput monitoring of major cell functions by means of lensfree video microscopy
- Author
-
Fabien Momey, Xavier Gidrol, S. Vinjimore Kesavan, Nelly Dubrulle, Eric Sulpice, Jean-Marc Dinten, Brigitte David-Watine, Olivier Cioni, Bernard Chalmond, D. Freida, Spencer L. Shorte, Cédric Allier, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Imagerie Dynamique (Plate-Forme) (PFID), Institut Pasteur [Paris] (IP), Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Centre de Mathématiques et de Leurs Applications (CMLA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris], Laboratoire d'Electronique et des Technologies de l'Information ( CEA-LETI ), Université Grenoble Alpes ( UGA ) -Direction de Recherche Technologique (CEA) ( DRT (CEA) ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Imagerie Dynamique (Plate-Forme) ( PFID ), Université de Cergy Pontoise ( UCP ), Université Paris-Seine, Centre de Mathématiques et de Leurs Applications ( CMLA ), École normale supérieure - Cachan ( ENS Cachan ) -Centre National de la Recherche Scientifique ( CNRS ), and Bertacchi Griffi, Nathalie
- Subjects
Programmed cell death ,Cell division ,[SDV]Life Sciences [q-bio] ,Primary Cell Culture ,Cell ,Population ,Video Recording ,Cell Count ,Video microscopy ,Biology ,Article ,Cell Line, Tumor ,Cell Adhesion ,medicine ,Humans ,RNA, Small Interfering ,education ,[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging ,education.field_of_study ,Microscopy, Video ,Osteoblasts ,Multidisciplinary ,Cell Death ,Mesenchymal stem cell ,[ SDV.BC.BC ] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Mesenchymal Stem Cells ,Transfection ,Fibroblasts ,Cell biology ,[SDV] Life Sciences [q-bio] ,medicine.anatomical_structure ,Cell culture ,Cell Division - Abstract
International audience; Quantification of basic cell functions is a preliminary step to understand complex cellular mechanisms, for e.g., to test compatibility of biomaterials, to assess the effectiveness of drugs and siRNAs, and to control cell behavior. However, commonly used quantification methods are label-dependent, and end-point assays. As an alternative, using our lensfree video microscopy platform to perform high-throughput real-time monitoring of cell culture, we introduce specifically devised metrics that are capable of non-invasive quantification of cell functions such as cell-substrate adhesion, cell spreading, cell division, cell division orientation and cell death. Unlike existing methods, our platform and associated metrics embrace entire population of thousands of cells whilst monitoring the fate of every single cell within the population. This results in a high content description of cell functions that typically contains 25,000 - 900,000 measurements per experiment depending on cell density and period of observation. As proof of concept, we monitored cell-substrate adhesion and spreading kinetics of human Mesenchymal Stem Cells (hMSCs) and primary human fibroblasts, we determined the cell division orientation of hMSCs, and we observed the effect of transfection of siCellDeath (siRNA known to induce cell death) on hMSCs and human Osteo Sarcoma (U2OS) Cells.
- Published
- 2014
- Full Text
- View/download PDF
33. Real-time cell culture monitoring by means of lensfree video microscopy
- Author
-
Olivier Cioni, Jean-Marc Dinten, Mathilde Menneteau, Srikanth Vinjimore Kesavan, Fabrice Navarro, Bernard Chalmond, Cédric Allier, and Fabien Momey
- Subjects
Thousand cells ,Cell culture ,Microscopy ,Nanotechnology ,Video microscopy ,Field of view ,Biology ,Image sensor - Abstract
We have developed “Lensfree video microscopy” to bring new perspectives to cell biology, with its ability to perform real-time cell culture monitoring, with a field of view of 24mm2 encompassing several thousand cells
- Published
- 2014
- Full Text
- View/download PDF
34. A B-spline based and computationally performant projector for iterative reconstruction in tomography - Application to dynamic X-ray gated CT
- Author
-
Fabien Momey, Loic Denis, Catherine Mennessier, Éric Thiébaut, Jean-Marie Becker, Laurent Desbat, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire Hubert Curien / Eris, Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Gestes Medico-chirurgicaux Assistés par Ordinateur (TIMC-IMAG-GMCAO), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
iterative reconstruction ,model ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,dynamic tomography ,inverse problems ,B-splines ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,gated CT ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,tomography ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,projector ,ComputingMethodologies_COMPUTERGRAPHICS - Abstract
International audience; Data modelization in tomography is a key point for iterative reconstruction. The design of the projector starts with the representation of the object of interest, decomposed on a discrete basis of functions. Standard models of projector such as ray driven, or more advanced models such as distance driven, use simple cubic voxels, which result in modelization errors due to their anisotropic behaviour. Moreover approximations made at the projection step increase these errors. Long, Fessler and Balter reduce approximation errors by projecting the cubic voxels more accurately. However anisotropy errors still hold. Spherically symmetric volume elements (blobs) eradicate them, but at the cost of increased complexity. We propose a compromise between these two approaches by using B-splines as basis functions. Their quasi-isotropic behaviour allows to avoid projection inconsistencies, while conserving local influence. Small approximations transform the exact footprint (projection of the basis function) into a separable function, which does not depend on the angle of projection, and is easier and faster to integrate on detector pixels. We obtain a more accurate projector, with no additional computation cost. Such an improvement is particularly of interest in the case of dynamic gated X-ray CT, which can be considered as a tomographic reconstruction problem with very few projection data, and for which we show some preliminary results, with an original method of iterative reconstruction, using spatio-temporal regularization of the "space + time" sequence, and making no use of motion estimation.
- Published
- 2012
35. A new representation and projection model for tomography, based on separable B-splines
- Author
-
Jean-Marie Becker, Fabien Momey, Éric Thiébaut, Laurent Desbat, Loïc Denis, Catherine Mennessier, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Gestes Medico-chirurgicaux Assistés par Ordinateur (TIMC-IMAG-GMCAO), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
iterative reconstruction ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,02 engineering and technology ,Iterative reconstruction ,tomography ,projector ,030218 nuclear medicine & medical imaging ,law.invention ,03 medical and health sciences ,0302 clinical medicine ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,law ,B-splines ,0202 electrical engineering, electronic engineering, information engineering ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Computer vision ,Projection (set theory) ,Mathematics ,ComputingMethodologies_COMPUTERGRAPHICS ,Graphical projection ,model ,Basis (linear algebra) ,business.industry ,inverse problems ,Representation (systemics) ,020206 networking & telecommunications ,Inverse problem ,Projector ,Tomography ,Artificial intelligence ,business ,Algorithm ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; Data modelization in tomography is a key point for iterative reconstruction. The design of the projector, i.e. the numerical model of projection, is mostly influenced by the representation of the object of interest, decomposed on a discrete basis of functions. Standard projector models are voxel or ray driven; more advanced models such as distance driven, use simple staircase voxels, giving rise to modelization errors due to their anisotropic behaviour. Moreover approximations made at the projection step amplify these errors. Though a more accurate projection could reduce approximation errors, characteristic functions of staircase voxels constitute a too coarse basis for representing a continuous function. As a result, pure modelization errors still hold. Spherically symmetric volume elements (blobs) have already been studied to eradicate such errors, but at the cost of increased complexity, because they require some tuning parameters for adapting them to this use. We propose to use 3D B-splines, which are piecewise polynomials, as basis functions. When the degree of these polynomials is sufficiently high, they are very close from being with a spherical symmetry, i.e. blobs, avoiding projection inconsistencies, while keeping local influence and separability property. B-splines are considered, in sampling theory, as the almost optimal functions for the discretization of a continuous signal, not necessarily band-limited, potentially allowing to reduce the angular sampling of the data without any loss of quality. We show that the projection of B-splines can be approximated rather accurately by a separable function, independent from the angle of projection, easier to integrate on detector pixels. The higher the degree of the used B-splines, the better the quality of the approximation, but also the larger the number of required operations. Thanks to these approximations, a convenient tradeoff between the need of accuracy and a fast calculation can be obtained. This has resulted in the implementation of a more accurate numerical projector, which can deal with a reduced angular sampling without loss of performance. The additional computation cost is also efficiently reduced. We have studied the quality of enhancement involved by this projector on 2D iterative reconstructions of a Shepp-Logan phantom, from a small number of fan beam projections. Reconstructions have been performed by optimization methods, minimizing the squared data residuals with a regularization term, using an efficient Quasi-Newton optimization algorithm.
- Published
- 2011
36. Fractal iterative method for fast atmospheric tomography on extremely large telescopes
- Author
-
Éric Thiébaut, Michel Tallon, Marie Fradin, Clémentine Béchet, I. Tallon-Bosc, and Fabien Momey
- Subjects
Wavefront ,Physics ,Fractal ,Optics ,Laser guide star ,Iterative method ,business.industry ,Maximum a posteriori estimation ,Tomography ,Adaptive optics ,business ,Fractal analysis ,Algorithm - Abstract
A challenge of adaptive optics (AO) on Extremely Large Telescopes (ELTs) is to overcome the difficulty of solving a huge number of equations in real time, especially when atmospheric tomography is involved. This is particularly the case for multi-conjugate or multi-objects AO systems. In addition, the quality of the wavefront estimation is crucial to optimize the performances of the future systems in a situation where measurements are missing and noises are correlated. The Fractal Iterative Method has been introduced as a fast iterative algorithm for minimum variance wavefront reconstruction and control on ELTs. This method has been successfully tested on Classical Single Conjugate AO systems on Octopus numerical simulator at ESO. But the minimum variance approach is expected to be mostly useful with atmospheric tomography. We present the first results obtained with FrIM in the context of atmospheric tomography. We recall the principle of the algorithm and we summarize the formalism used for modeling the measurements obtained from laser guide stars that entail spot elongation and tip/tilt indetermination, mixed with low order measurements from natural guide stars. We show the respective effects of tip/tilt indetermination, spot elongation, unseen modes on various configurations, as well as the usefulness of priors and correct noise models in the reconstruction. This analysis is essential for balancing the various errors that combine in a quite complex way and to optimize the configuration of the future AO systems for specific science cases and instrument requirements.
- Published
- 2010
- Full Text
- View/download PDF
37. Fast continuous model of Shack-Hartmann wavefront sensors for atmospheric tomography on ELTs
- Author
-
Michel Tallon and Fabien Momey
- Subjects
Wavefront ,Physics ,Basis (linear algebra) ,business.industry ,Continuous modelling ,Astrophysics::Instrumentation and Methods for Astrophysics ,Basis function ,Standard deviation ,Optics ,Resampling ,business ,Adaptive optics ,Algorithm ,Interpolation - Abstract
Atmospheric tomography is a key element for many adaptive optics architectures on which the com- ing Extremely Large Telescopes rely. When modeling atmospheric tomography, the samples of the wavefronts in the turbulent layers are not aligned with the subapertures after propagation down to the wavefront sensors (WFS). So the classical models of Shack-Hartmann WFS (e.g. Fried's model) include resampling before performing the standard slopes calculation. This operation introduces errors and only approximates the response of the WFS (error of 10 to 20% of the standard deviation of the slopes). We introduce a continuous model that represents the wavefronts on a basis of continuous functions in the turbulent layers. Propagation and gradient measurements are then computed analytically, without any resampling. Assuming the separability of the basis functions on the two dimensions, we obtain a sparse operator that can be factorized in two components. This factorization enhances the speed close to that of the standard approach using interpolation. We obtain a fast accurate continuous WFS model suitable to wide field adaptive optics systems on ELTs.
- Published
- 2010
- Full Text
- View/download PDF
38. Modèle direct pour la tomographie 3D : apport d'une approximation par B-splines séparables
- Author
-
Fabien Momey, Jean-Marie Becker, Loic Denis, Catherine Mennessier, Éric Thiébaut, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire Hubert Curien / Eris, Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
modèle direct ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,reconstruction itérative ,approche inverse ,B-splines ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,tomographie - Abstract
National audience; En tomographie, les méthodes de reconstruction itératives nécessitent une modélisation discrète du processus d'obtention des mesures. La représentation de l'objet d'intérêt est le point de départ à l'élaboration d'un modèle de projection tomographique sur le détecteur, précis et rapide. Les modèles conventionnels ray driven et distance driven, construits à partir d'indicatrices de voxels, ont l'inconvénient d'être fortement anisotropes. Nous proposons un modèle utilisant des fonctions de bases B-splines de degré adéquat, nous fournissant un projecteur quasiment isotrope. Une approximation de la projection par une B-spline séparable sur le détecteur conduit à un modèle efficace en géométrie parallèle et conique, de qualité supérieure aux modèles conventionnels. Nous montrons notamment que l'erreur de modélisation est améliorée d'un facteur 10 par rapport au modèle distance driven. Nous illustrons l'amélioration de la qualité de reconstruction apportée par notre modèle sur des simulations du fantôme de Shepp-Logan, en utilisant une méthode itérative de reconstruction régularisée.
39. Approche inverse régularisée pour la reconstruction 4-D en tomographie dynamique sans compensation de mouvement
- Author
-
Fabien Momey, Éric Thiébaut, Catherine Burnier-Mennessier, Loic Denis, Jean-Marie Becker, Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Momey, Fabien, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire Hubert Curien / Eris, and Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
reconstruction ,régularisation ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing ,approche inverse ,tomographie dynamique ,[INFO.INFO-IM] Computer Science [cs]/Medical Imaging ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,spatio-temporel ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,tomographie ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
National audience; La tomographie dynamique est la reconstruction, à partir de projections, d'objets induits d'un mouvement, le plus souvent périodique (e.g. le cycle respiratoire chez un patient). Le problème de reconstruction devient alors 4-D (3-D spatiale + temps), à données parcimonieuses puisqu'une projection ne correspondra qu'à un instant spécifique de la séquence 4-D d'un cycle (ou période). Nous traitons la reconstruction dynamique comme un problème inverse global avec un terme d'attache aux données utilisant la totalité des projections. Les paramètres estimés sont l'image 4-D d'un cycle dynamique de l'objet. Le modèle de reprojection est calé temporellement sur le cycle d'acquisition des projections grâce à un signal temporel 1-D décrivant l'évolution dynamique de l'objet, et sa périodicité. Une étape d'interpolation temporelle de la séquence 4-D sur les dates d'acquisition précède alors la projection standard à un instant donné. Nous injectons également une régularisation spatio-temporelle de l'objet sous forme d'une variation totale 4-D. La régularisation apporte alors la corrélation temporelle entre les différentes tranches reconstruites, et permet ainsi d'extraire au mieux l'information fournie par les données, sans aucune estimation ni compensation de mouvement. Nous faisons la démonstration de notre approche sur des reconstructions 2-D+t d'un fantôme mécanique acquises sur un scanner Cone-Beam. La régularisation spatio-temporelle apporte un gain sans équivoque sur la qualité des reconstructions dynamiques. Des premiers résultats 4-D (3-D+t) encourageants sont obtenus sur données cliniques d'un patient en respiration.
40. RECONSTRUCTION SUPER-RESOLUE D'HOLOGRAMMES RGB
- Author
-
Frédéric Jolivet, Corinne Fournier, Loic Denis, Olivier Flasseur, Fabien Momey, Thierry Fournel, Nicolas Verrier, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Hubert Curien / Eris, Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Modélisation, Intelligence, Processus et Système (MIPS), and Ecole Nationale Supérieure d'Ingénieur Sud Alsace-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-IUT de Colmar-IUT de Mulhouse
- Subjects
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; Holographie numérique en ligne, Problème Inverse, Super-résolution numérique, Reconstruction Couleur, Filtre de Bayer. RESUME Ces dernières années le secteur des capteurs « bas coût » profite d'un marché de plus en plus dynamique (notamment avec l'avènement du smartphone, de l'appareil photo numérique…). Ainsi des capteurs couleur peu onéreux, et ayant des tailles de pixels de l'ordre du micromètre permettent de repousser les performances de l'holographie numérique en ligne. De plus l'utilisation d'approches problèmes inverses a permis de lever certaines limites des méthodes de reconstruction holographique habituellement utilisées : présence d'images jumelles, artefacts dûs à la troncature (effet de bord…). Elles permettent également une amélioration de la précision de reconstruction [1,2,3]. Ces approches se basent sur un modèle de formation d'image linéaire, approximation satisfaisante dans le régime de la diffraction de Fresnel pour les milieux dilués. Afin d'améliorer la résolution des reconstructions holographiques, des travaux ont montré l'intérêt d'utiliser une pile d'hologrammes d'un objet translaté transversalement [3,4]. De leur côté les travaux [5,6,7] ont montré tout l'intérêt d'utiliser un montage opérant à plusieurs longueurs d'onde (sources Rouge, Vert, Bleu) avec un capteur couleur (suppression des aberrations chromatiques…). Nous proposons ici une méthode de reconstruction holographique RGB Super-Résolue basée sur une approche inverse non-paramétrique. Pour cela nous proposons de résoudre le problème sous contrainte de positivité. La méthode proposée alterne des étapes de reconstructions régularisées et d'estimation des translations entre hologrammes et la reconstruction courante. En termes de résultat, l'approche inverse super-résolue couleur proposée permet d'améliorer la résolution spatiale et le rapport signal à bruit des hologrammes reconstruits.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.