Back to Search Start Over

Regularized reconstruction of absorbing and phase objects from a single in-line hologram, application to fluid mechanics and micro-biology

Authors :
Nicolas Faure
Frédéric Pinston
Loïc Méès
Jean-Louis Marié
Corinne Fournier
Frédéric Jolivet
Loïc Denis
Nathalie Grosjean
Fabien Momey
Laboratoire Hubert Curien [Saint Etienne] (LHC)
Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
bioMérieux - Clinical Unit
Source :
Optics Express, Optics Express, Optical Society of America-OSA Publishing, 2018, 26 (7), ⟨10.1364/OE.26.008923⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; Reconstruction of phase objects is a central problem in digital holography, whose various applications include microscopy, biomedical imaging, and fluid mechanics. Starting from a single in-line hologram, there is no direct way to recover the phase of the diffracted wave in the hologram plane. The reconstruction of absorbing and phase objects therefore requires the inversion of the non-linear hologram formation model. We propose a regularized reconstruction method that includes several physically-grounded constraints such as bounds on transmittance values, maximum/minimum phase, spatial smoothness or the absence of any object in parts of the field of view. To solve the non-convex and non-smooth optimization problem induced by our modeling, a variable splitting strategy is applied and the closed-form solution of the sub-problem (the so-called proximal operator) is derived. The resulting algorithm is efficient and is shown to lead to quantitative phase estimation on reconstructions of accurate simulations of in-line holograms based on the Mie theory. As our approach is adaptable to several in-line digital holography configurations, we present and discuss the promising results of reconstructions from experimental in-line holograms obtained in two different applications: the tracking of an evaporating droplet (size ∼ 100µm) and the microscopic imaging of bacteria (size ∼ 1µm).

Details

Language :
English
ISSN :
10944087
Database :
OpenAIRE
Journal :
Optics Express, Optics Express, Optical Society of America-OSA Publishing, 2018, 26 (7), ⟨10.1364/OE.26.008923⟩
Accession number :
edsair.doi.dedup.....9cc6f8a455b309cb3d1efa9baf0b9138
Full Text :
https://doi.org/10.1364/OE.26.008923⟩