1. Magnon-phonon Fermi resonance in antiferromagnetic CoF2
- Author
-
Thomas W. J. Metzger, Kirill A. Grishunin, Chris Reinhoffer, Roman M. Dubrovin, Atiqa Arshad, Igor Ilyakov, Thales V. A. G. de Oliveira, Alexey Ponomaryov, Jan-Christoph Deinert, Sergey Kovalev, Roman V. Pisarev, Mikhail I. Katsnelson, Boris A. Ivanov, Paul H. M. van Loosdrecht, Alexey V. Kimel, and Evgeny A. Mashkovich
- Subjects
Science - Abstract
Abstract Understanding spin-lattice interactions in antiferromagnets is a critical element of the fields of antiferromagnetic spintronics and magnonics. Recently, coherent nonlinear phonon dynamics mediated by a magnon state were discovered in an antiferromagnet. Here, we suggest that a strongly coupled two-magnon-one phonon state in this prototypical system opens a novel pathway to coherently control magnon-phonon dynamics. Utilizing intense narrow-band terahertz (THz) pulses and tunable magnetic fields up to μ 0 H ext = 7 T, we experimentally realize the conditions of magnon-phonon Fermi resonance in antiferromagnetic CoF2. These conditions imply that both the spin and the lattice anharmonicities harvest energy from the transfer between the subsystems if the magnon eigenfrequency f m is half the frequency of the phonon 2f m = f ph. Performing THz pump-infrared probe spectroscopy in conjunction with simulations, we explore the coupled magnon-phonon dynamics in the vicinity of the Fermi-resonance and reveal the corresponding fingerprints of nonlinear interaction facilitating energy exchange between these subsystems.
- Published
- 2024
- Full Text
- View/download PDF