Back to Search
Start Over
Magnon-phonon Fermi resonance in antiferromagnetic CoF2
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-7 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Understanding spin-lattice interactions in antiferromagnets is a critical element of the fields of antiferromagnetic spintronics and magnonics. Recently, coherent nonlinear phonon dynamics mediated by a magnon state were discovered in an antiferromagnet. Here, we suggest that a strongly coupled two-magnon-one phonon state in this prototypical system opens a novel pathway to coherently control magnon-phonon dynamics. Utilizing intense narrow-band terahertz (THz) pulses and tunable magnetic fields up to μ 0 H ext = 7 T, we experimentally realize the conditions of magnon-phonon Fermi resonance in antiferromagnetic CoF2. These conditions imply that both the spin and the lattice anharmonicities harvest energy from the transfer between the subsystems if the magnon eigenfrequency f m is half the frequency of the phonon 2f m = f ph. Performing THz pump-infrared probe spectroscopy in conjunction with simulations, we explore the coupled magnon-phonon dynamics in the vicinity of the Fermi-resonance and reveal the corresponding fingerprints of nonlinear interaction facilitating energy exchange between these subsystems.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0e409469c954d7fa52b3ee15f5452aa
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-49716-w