1. Hopf bifurcation in a Mean-Field model of spiking neurons
- Author
-
Etienne Tanré, Romain Veltz, Quentin Cormier, Université Côte d'Azur (UCA), TO Simulate and CAlibrate stochastic models (TOSCA), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Mathématiques pour les Neurosciences (MATHNEURO), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), European Project: 945539,H2020,H2020-SGA-FETFLAG-HBP-2019,HBP SGA3(2020), Institut National de Recherche en Informatique et en Automatique (Inria), and European Project: 945539,HBP SGA3(2020)
- Subjects
Statistics and Probability ,McKean-Vlasov SDE ,Holomorphic function ,Mean-field interaction ,Piecewise deterministic Markov process ,01 natural sciences ,Measure (mathematics) ,010104 statistics & probability ,symbols.namesake ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,Applied mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Piecewise-deterministic Markov process ,Hopf bifurcation ,0101 mathematics ,Long time behavior ,Mathematics ,Toy model ,Markov chain ,010102 general mathematics ,Probability (math.PR) ,60K35 (Primary) 35B10, 35B32, 60H10 (Secondary) ,Volterra integral equation ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Discrete time and continuous time ,symbols ,Invariant measure ,Statistics, Probability and Uncertainty ,Mathematics - Probability ,Analysis of PDEs (math.AP) - Abstract
International audience; We study a family of non-linear McKean-Vlasov SDEs driven by a Poisson measure, modelling the mean-field asymptotic of a network of generalized Integrate-and-Fire neurons.We give sufficient conditions to have periodic solutions through a Hopf bifurcation. Our spectral conditions involve the location of the roots of an explicit holomorphic function. The proof relies on two main ingredients. First, we introduce a discrete time Markov Chain modeling the phases of the successive spikes of a neuron. The invariant measure of this Markov Chain is related to the shape of the periodic solutions. Secondly, we use the Lyapunov-Schmidt method to obtain self-consistent oscillations. We illustrate the result with a toy model for which all the spectral conditions can be analytically checked.
- Published
- 2020