Back to Search Start Over

An integrate-and-fire model to generate spike trains with long-range dependence

Authors :
Patricio Orio
Alexandre Richard
Etienne Tanré
Mathématiques et Informatique pour la Complexité et les Systèmes (MICS)
CentraleSupélec
Fédération de Mathématiques de l'Ecole Centrale Paris (FR3487)
Ecole Centrale Paris-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Centro Interdisciplinario de Neurociencia de Valparaiso (CINV)
Universidad de Valparaiso [Chile]
TO Simulate and CAlibrate stochastic models (TOSCA)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
ECOS-Sud Program Chili-France C15E05
Millenium scientific initiative of the Chilean Ministry of Economy, Development, and Tourism (P09-022-F)
Advanced center for electrical and electronic engineering, Conicyt (FB0008)
European Project: 720270,H2020 Pilier Excellent Science,H2020-Adhoc-2014-20,HBP SGA1(2016)
Centre National de la Recherche Scientifique (CNRS)-Ecole Centrale Paris-CentraleSupélec
Source :
Journal of Computational Neuroscience, Journal of Computational Neuroscience, 2018, 44 (3), pp.297-312. ⟨10.1007/s10827-018-0680-1⟩, Journal of Computational Neuroscience, Springer Verlag, 2018, 44 (3), pp.297-312. ⟨10.1007/s10827-018-0680-1⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; Long-range dependence (LRD) has been observed in a variety of phenomena in nature, and for several years also in the spiking activity of neurons. Often, this is interpreted as originating from a non-Markovian system. Here we show that a purely Markovian integrate-and-fire (IF) model, with a noisy slow adaptation term, can generate interspike intervals (ISIs) that appear as having LRD. However a proper analysis shows that this is not the case asymptotically. For comparison, we also consider a new model of individual IF neuron with fractional (non-Markovian) noise. The correlations of its spike trains are studied and proven to have LRD, unlike classical IF models. On the other hand, to correctly measure long-range dependence, it is usually necessary to know if the data are stationary. Thus, a methodology to evaluate stationarity of the ISIs is presented and applied to the various IF models. We explain that Markovian IF models may seem to have LRD because of non-stationarities.

Details

Language :
English
ISSN :
09295313 and 15736873
Database :
OpenAIRE
Journal :
Journal of Computational Neuroscience, Journal of Computational Neuroscience, 2018, 44 (3), pp.297-312. ⟨10.1007/s10827-018-0680-1⟩, Journal of Computational Neuroscience, Springer Verlag, 2018, 44 (3), pp.297-312. ⟨10.1007/s10827-018-0680-1⟩
Accession number :
edsair.doi.dedup.....3ce43cdb4a6e38c855bb98431508e6ee