Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) A facile, fast and efficient microwave-assisted hydrothermal (MWH) route was used to synthetize undoped and doped spinels with Al or Co or Ni. The reaction was carried at low temperature of 140 °C for 5 min in an MWH reactor from aqueous solution of KMnO4, LiOH, acetone (Li/Mn = 1.2; acetone/Mn = 1.1) and the nitrate of the respective cationic dopant. The obtained material was then added in the same reactor with an aqueous solution of LiOH and submitted to a new MWH treatment at the same temperature of 140 °C for 10 min. Finally, a heat treatment in a conventional microwave oven for 4 min was carried out. Three different mol proportions of the dopants (M/Mn = 0.075, 0.025 and 0.010; M = cationic dopant) and two orders of reagents addition using a given proportion were investigated in the syntheses. The best condition was achieved when the precursor of the doping cation was dissolved in acetone using the lowest mol proportion of the reagents. The X-ray diffraction (XRD) patterns of the undoped and doped spinels (Al, Co or Ni) were all similar with highly crystalline diffraction peaks corresponding to the cubic spinel with space group Fd3 ̅m (ICSD-88644). The presence of other phases associate with the dopants and their impact on the crystallization were not detected. All synthetized materials presented a significant amount of potassium birnessite identified by XRD and calculated by Rietveld refinement. The chemical compositions were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES), resulting in Li1.24K0.05Mn1.92O4.00, Li1.46K0.06Al0.04Mn1.85O4.00, Li1.39K0.07Co0.02Mn1.85O4.00 and Li1.30K0.10Ni0.02Mn1.87O4.00. From the results of small-angle X-ray scattering (SAXS), it can be inferred that nanoparticles were obtained. Beside this, no significant changes were observed by scanning electronic microscopy (SEM), indicating that the low doping with Al, Co or Ni (less than 2.5%) had no effect on the surface morphology of the spinels synthesized by MWH. Afterward, a systematic study to understand in-depth the capacity fading mechanism of LMO nanoparticles when cycled in half cell in two different potential ranges: 3.3 – 4.3 V vs. Li+/Li and 2.0 – 4.3 V vs. Li+/Li was carried out. In the first range, the nanocrystallinity and cationic doping played an important role in improving the electrochemical performance with respect to LMO microparticles. They significantly reduced the charge-transfer resistance, lowered the 1st cycle irreversible capacity to 6%, and achieved a capacity retention between 85 and 90% after 380 cycles with excellent columbic efficiency close to 99% without compromising the specific charge at a high cycling rate of 5C. From X-ray absorption spectroscopy (XAS) measurements, the values of oxidation state of Co and Ni in as-synthesized spinels were found to be ~2.7+ and ~2.0+, respectively. They did not change upon cycling neither in the bulk nor on the surface, implying that Co and Ni did not contribute for the charge compensation and specific capacity. The fitting of the extended X-ray absorption fine structure (EXAFS) indicated that Co and Ni are in the structure of the spinels due to the shorter metal-metal distances than those of the respective standard oxides. Rietveld refinements results confirmed that Li-rich spinels were obtained with part of the Li substituting the Mn into the structure and breaking the symmetry. In the potential range of 2.0 V – 4.3 V vs. Li+/Li, the electrodes of undoped nano-sized and micron-sized spinels presented similar initial values of specific capacity of around 200 mA h g–1 (1C = 296 mA h g–1) at a C/20 rate. The best electrochemical performance was achieved for the nano-sized undoped LiMO with a specific capacity of 201 mA h g–1, 53.5% of capacity retention and 99% of coulombic efficiency after the 55th cycle at a C/20 rate. Results from operando XAS indicated that it is easier to intercalate Li+ ions into the structure of the nano-sized than into the micro-sized spinel which corroborates with its better electrochemical performance. As far as we know, the spectroscopic signature of the Jahn-Teller distortion around Mn3+ in the LMO was obtained for the first time in the present work. Using the proposed cycling program, it was possible to obtain a superior electrochemical performance for the electrode of undoped Li-rich nano-sized LMO. This electrode exhibited excellent cyclability with a capacity retention of 101.5% in the potential range of 3.3 to 4.3 V vs. Li+/Li at a C/5 rate. Uma rota hidrotérmica aquecida por micro-ondas (HMO) fácil, rápida e eficiente foi usada para sintetizar espinélios não dopados e dopados com Al ou Co ou Ni. A reação foi realizada a uma baixa temperatura de 140°C por 5 min em um reator HMO a partir de soluções aquosas de KMnO4, LiOH, acetona (Li/Mn = 1,2; acetona/Mn = 1,1) e do nitrato do respectivo dopante catiônico. O material obtido foi então adicionado no mesmo reator com uma solução aquosa de LiOH e submetida a um novo tratamento térmico por HMO na mesma temperatura de 140°C por 10 min. Por fim, foi realizado um tratamento térmico em forno de micro-ondas convencional por 4 min. Três diferentes proporções em mol dos dopantes (M/Mn = 0,075, 0,025 e 0,010; M = dopante catiônico) e duas ordens de adição dos reagentes usando uma dada proporção foram investigadas nas sínteses. A melhor condição foi obtida quando o precursor do cátion dopante foi dissolvido em acetona usando a menor proporção em mol dos reagentes. Os padrões de difração de raios X (DRX) dos espinélios não dopados e dopados com Al, Co ou Ni foram todos semelhantes com picos de difração altamente cristalinos correspondentes ao espinélio cúbico com grupo espacial Fd3 ̅m (ICSD-88644). A presença de outras fases associadas aos dopantes e seu impacto na cristalização não foram detectados. Todos os materiais sintetizados apresentaram uma quantidade significativa de birnessita de potássio identificada por DRX e calculada por refinamento de Rietveld. As composições químicas foram determinadas por espectroscopia de emissão atômica com plasma indutivamente acoplado (ICP-AES), resultando em Li1,24K0,05Mn1,92O4,00, Li1,46K0,06Al0,04Mn1,85O4,00, Li1,39K0,07Co0,02Mn1,85O4,00 e Li1,30K0,10Ni0,02Mn1,87O4,00. A partir dos resultados de espalhamento de raios X de baixo ângulo (SAXS), pode-se inferir que foram obtidas nanopartículas. Além disso, não foram observadas alterações significativas por microscopia eletrônica de varredura (MEV), indicando que a baixa dopagem com Al, Co ou Ni (inferior a 2,5%) não teve efeito sobre a morfologia da superfície dos espinélios sintetizados por HMO. Posteriormente, foi realizado um estudo sistemático para entender a fundo o mecanismo de perda de capacidade das nanopartículas de LMO quando ciclado em duas faixas de potenciais diferentes: 3,3 – 4,3 V vs. Li+/Li e 2,0 – 4,3 V vs. Li+/Li. Na primeira faixa, a nanocristalinidade e a dopagem desempenharam um papel importante para a melhoria do desempenho eletroquímico em relação às micropartículas de LMO. Reduziram significativamente a resistência à transferência de carga, diminuíram a capacidade irreversível do 1º ciclo para 6% e atingiram uma retenção de capacidade entre 85 e 90% após 380 ciclos com excelente eficiência coulômbica próxima de 99% sem comprometer a capacidade específica a uma alta taxa de ciclagem de 5C. A partir de medidas de espectroscopia de absorção de raios X (XAS), os valores de estado de oxidação do Co e Ni nos espinélios sintetizados foram determinados como sendo ~2,7+ e ~2,0+, respectivamente. Eles não variaram após ciclagem nem no interior e nem na superfície das partículas, o que implica que Co e Ni não contribuíram para a compensação de cargas e para a capacidade específica. O ajuste da estrutura fina de absorção de raios X estendida (EXAFS) indicou que Co e Ni estão na estrutura dos espinélios devido às distâncias metal-metal mais curtas do que as dos respectivos óxidos padrões. Os resultados de refinamentos de Rietveld confirmaram que foram obtidos espinélios enriquecidos com Li com parte do Li substituindo o Mn na estrutura e quebrando a simetria. Na faixa de potencial de 2,0 V a 4,3 V vs. Li+/Li, os eletrodos de espinélio nanométrico não dopado e micrométrico apresentaram valores iniciais semelhantes de capacidade específica em torno de 200 mA h g–1 (1C = 296 mA h g–1) a uma taxa de C/20. O melhor desempenho eletroquímico foi obtido para o espinélio nanométrico não dopado com capacidade específica de 201 mA h g–1, 53,5% de retenção de capacidade e 99% de eficiência coulômbica após o 55º ciclo a uma taxa de C/20. Os resultados de XAS operando indicaram que é mais fácil intercalar íons Li+ na estrutura do LMO nanométrico do que no micrométrico, o que corrobora com seu melhor desempenho eletroquímico. Até onde se sabe, a assinatura espectroscópica da distorção Jahn-Teller em torno do Mn3+ no LMO foi obtida pela primeira vez no presente trabalho. Usando o programa de ciclagem proposto, foi possível obter um desempenho eletroquímico superior para o eletrodo de LMO nanométrico não dopado enriquecido com Li. Este eletrodo apresentou excelente ciclabilidade com retenção de capacidade de 101,5% na faixa de potenciais de 3,3 a 4,3 V vs. Li+/Li a uma taxa de C/5. 2018/16158-6 2019/25700-1