5 results on '"E. Loyez"'
Search Results
2. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields
- Author
-
J J Santos, M Bailly-Grandvaux, L Giuffrida, P Forestier-Colleoni, S Fujioka, Z Zhang, P Korneev, R Bouillaud, S Dorard, D Batani, M Chevrot, J E Cross, R Crowston, J-L Dubois, J Gazave, G Gregori, E d’Humières, S Hulin, K Ishihara, S Kojima, E Loyez, J-R Marquès, A Morace, P Nicolaï, O Peyrusse, A Poyé, D Raffestin, J Ribolzi, M Roth, G Schaumann, F Serres, V T Tikhonchuk, P Vacar, and N Woolsey
- Subjects
strong magnetic field ,laser-driven coil targets ,laser-plasma interaction ,B-dot probing ,faraday rotation ,proton-deflectometry ,Science ,Physics ,QC1-999 - Abstract
Quasi-static magnetic-fields up to 800 T are generated in the interaction of intense laser pulses (500 J, 1 ns, ${10}^{17}\;{\rm{W}}\;{\mathrm{cm}}^{-2}$ ) with capacitor-coil targets of different materials. The reproducible magnetic-field peak and rise-time, consistent with the laser pulse duration, were accurately inferred from measurements with GHz-bandwidth inductor pickup coils (B-dot probes). Results from Faraday rotation of polarized optical laser light and deflectometry of energetic proton beams are consistent with the B-dot probe measurements at the early stages of the target charging, up to $t\approx 0.35$ ns, and then are disturbed by radiation and plasma effects. The field has a dipole-like distribution over a characteristic volume of 1 mm ^3 , which is consistent with theoretical expectations. These results demonstrate a very efficient conversion of the laser energy into magnetic fields, thus establishing a robust laser-driven platform for reproducible, well characterized, generation of quasi-static magnetic fields at the kT-level, as well as for magnetization and accurate probing of high-energy-density samples driven by secondary powerful laser or particle beams.
- Published
- 2015
- Full Text
- View/download PDF
3. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields
- Author
-
S. Sakata, M. Ehret, Nigel Woolsey, Markus Roth, J. J. Honrubia, J.-R. Marquès, R. Bouillaud, J. Servel, Vladimir Tikhonchuk, P. Forestier-Colleoni, Sadaoki Kojima, S. Dorard, R. Crowston, S. Hulin, Joao Santos, F. Serres, E. Loyez, Gianluca Gregori, Zhe Zhang, J.-L. Dubois, M. Chevrot, Shinsuke Fujioka, L. Giuffrida, Mathieu Bailly-Grandvaux, Dimitri Batani, C. Bellei, Ph. Nicolaï, Gabriel Schaumann, J. E. Cross, Alessio Morace, Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institute of laser Engineering, Osaka University [Osaka], E.T.S.I. Aeronauticos (E.T.S.I.), Universidad Politécnica de Madrid (UPM), Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Oxford], University of Oxford, Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom, Institut für Kernphysik [Darmstadt], Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt), Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB), ANR-11-BS04-0014,TERRE,Transport électronique en régime relativiste dans des plasmas denses(2011), ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010), European Project: 633053,H2020,EURATOM-Adhoc-2014-20,EUROfusion(2014), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), University of Oxford [Oxford], Technische Universität Darmstadt (TU Darmstadt), and Università degli Studi di Milano-Bicocca [Milano] (UNIMIB)
- Subjects
Thermonuclear fusion ,Science ,General Physics and Astronomy ,Electron ,01 natural sciences ,7. Clean energy ,General Biochemistry, Genetics and Molecular Biology ,Article ,010305 fluids & plasmas ,law.invention ,law ,0103 physical sciences ,Relativistic electron beam ,lcsh:Science ,010306 general physics ,Inertial confinement fusion ,Physics ,[PHYS]Physics [physics] ,Multidisciplinary ,General Chemistry ,Plasma ,Laser ,Computational physics ,Particle acceleration ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Physics::Accelerator Physics ,Electron temperature ,lcsh:Q - Abstract
Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser–plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-μm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion., Efficient energy transport by laser-driven relativistic electron beams is crucial in many applications including inertial confinement fusion, and particle acceleration. Here the authors demonstrate relativistic electron beam guiding in dense plasma with an externally imposed high magnetic field.
- Published
- 2018
- Full Text
- View/download PDF
4. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields
- Author
-
Alexandre Poyé, Ph. Korneev, Ph. Nicolaï, Shinsuke Fujioka, K. Ishihara, J.-R. Marquès, Mathieu Bailly-Grandvaux, Gabriel Schaumann, J. Gazave, Vladimir Tikhonchuk, E. Loyez, Markus Roth, F. Serres, Nigel Woolsey, Zhe Zhang, R. Crowston, Emmanuel d'Humières, Joao Santos, Alessio Morace, Gianluca Gregori, Olivier Peyrusse, L. Giuffrida, R. Bouillaud, J. L. Dubois, S. Dorard, Dimitri Batani, J. E. Cross, M. Chevrot, J. Ribolzi, P. Forestier-Colleoni, Sadaoki Kojima, D. Raffestin, S. Hulin, Ph Vacar, Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institute of laser Engineering, Osaka University [Osaka], The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) [Moscow, Russia], Laboratoire pour l'utilisation des lasers intenses (LULI), Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), University of Oxford, University of York [York, UK], Centre d'études scientifiques et techniques d'Aquitaine (CESTA), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut für Kernphysik [Darmstadt], Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt), ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010), ANR-11-BS04-0014,TERRE,Transport électronique en régime relativiste dans des plasmas denses(2011), European Project: 633053,H2020,EURATOM-Adhoc-2014-20,EUROfusion(2014), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), University of Oxford [Oxford], and Technische Universität Darmstadt (TU Darmstadt)
- Subjects
B-dot probing ,Field (physics) ,FOS: Physical sciences ,General Physics and Astronomy ,Radiation ,Inductor ,01 natural sciences ,laser-driven coil targets ,010305 fluids & plasmas ,law.invention ,symbols.namesake ,Magnetization ,laser-plasma interaction ,Optics ,plasma magnetization ,law ,0103 physical sciences ,Faraday effect ,strong magnetic field ,010306 general physics ,faraday rotation ,Physics ,[PHYS]Physics [physics] ,proton-deflectometry ,business.industry ,Plasma ,Laser ,Physics - Plasma Physics ,Magnetic field ,Plasma Physics (physics.plasm-ph) ,symbols ,business - Abstract
Quasi-static magnetic-fields up to $800\,$T are generated in the interaction of intense laser pulses ($500\,$J, $1\,$ns, $10^{17}\,$W/cm$^2$) with capacitor-coil targets of different materials. The reproducible magnetic-field peak and rise-time, consistent with the laser pulse duration, were accurately inferred from measurements with GHz-bandwidth inductor pickup coils (B-dot probes). Results from Faraday rotation of polarized optical laser light and deflectometry of energetic proton beams are consistent with the B-dot probe measurements at the early stages of the target charging, up to $t\approx 0.35\,$ns, and then are disturbed by radiation and plasma effects. The field has a dipole-like distribution over a characteristic volume of $1\,$mm$^3$, which is coherent with theoretical expectations. These results demonstrate a very efficient conversion of the laser energy into magnetic fields, thus establishing a robust laser-driven platform for reproducible, well characterized, generation of quasi-static magnetic fields at the kT-level, as well as for magnetization and accurate probing of high-energy-density samples driven by secondary powerful laser or particle beams., 16 pages, 7 figures
- Published
- 2015
- Full Text
- View/download PDF
5. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields.
- Author
-
Bailly-Grandvaux M, Santos JJ, Bellei C, Forestier-Colleoni P, Fujioka S, Giuffrida L, Honrubia JJ, Batani D, Bouillaud R, Chevrot M, Cross JE, Crowston R, Dorard S, Dubois JL, Ehret M, Gregori G, Hulin S, Kojima S, Loyez E, Marquès JR, Morace A, Nicolaï P, Roth M, Sakata S, Schaumann G, Serres F, Servel J, Tikhonchuk VT, Woolsey N, and Zhang Z
- Abstract
Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser-plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-μm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.