Back to Search Start Over

Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields

Authors :
S. Sakata
M. Ehret
Nigel Woolsey
Markus Roth
J. J. Honrubia
J.-R. Marquès
R. Bouillaud
J. Servel
Vladimir Tikhonchuk
P. Forestier-Colleoni
Sadaoki Kojima
S. Dorard
R. Crowston
S. Hulin
Joao Santos
F. Serres
E. Loyez
Gianluca Gregori
Zhe Zhang
J.-L. Dubois
M. Chevrot
Shinsuke Fujioka
L. Giuffrida
Mathieu Bailly-Grandvaux
Dimitri Batani
C. Bellei
Ph. Nicolaï
Gabriel Schaumann
J. E. Cross
Alessio Morace
Centre d'Etudes Lasers Intenses et Applications (CELIA)
Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
Institute of laser Engineering
Osaka University [Osaka]
E.T.S.I. Aeronauticos (E.T.S.I.)
Universidad Politécnica de Madrid (UPM)
Laboratoire pour l'utilisation des lasers intenses (LULI)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Department of Physics [Oxford]
University of Oxford
Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
Institut für Kernphysik [Darmstadt]
Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt)
Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB)
ANR-11-BS04-0014,TERRE,Transport électronique en régime relativiste dans des plasmas denses(2011)
ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010)
European Project: 633053,H2020,EURATOM-Adhoc-2014-20,EUROfusion(2014)
Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB)
University of Oxford [Oxford]
Technische Universität Darmstadt (TU Darmstadt)
Università degli Studi di Milano-Bicocca [Milano] (UNIMIB)
Source :
Nature Communications, Nature Communications, 2018, 9, pp.102. ⟨10.1038/s41467-017-02641-7⟩, Nature Communications, Vol 9, Iss 1, Pp 1-8 (2018), Nature Communications, Nature Publishing Group, 2018, 9, pp.102. ⟨10.1038/s41467-017-02641-7⟩
Publication Year :
2018
Publisher :
Nature Publishing Group, 2018.

Abstract

Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser–plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-μm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.<br />Efficient energy transport by laser-driven relativistic electron beams is crucial in many applications including inertial confinement fusion, and particle acceleration. Here the authors demonstrate relativistic electron beam guiding in dense plasma with an externally imposed high magnetic field.

Details

Language :
English
ISSN :
20411723
Database :
OpenAIRE
Journal :
Nature Communications, Nature Communications, 2018, 9, pp.102. ⟨10.1038/s41467-017-02641-7⟩, Nature Communications, Vol 9, Iss 1, Pp 1-8 (2018), Nature Communications, Nature Publishing Group, 2018, 9, pp.102. ⟨10.1038/s41467-017-02641-7⟩
Accession number :
edsair.doi.dedup.....49a4cb90cdd4768102f7a0f83ea2fe26