95 results on '"Douglas H Beck"'
Search Results
2. Imaging individual barium atoms in solid xenon for barium tagging in nEXO
- Author
-
X. S. Jiang, A. Der Mesrobian-Kabakian, T. Tolba, S. Rescia, D. Fairbank, A. Piepke, Y. Y. Ding, O. Zeldovich, D. Kodroff, T. Daniels, J. Echevers, R. DeVoe, M. Hughes, Simon Johnston, R. Saldanha, O. Nusair, R. Krücken, Alexis G. Schubert, R. MacLellan, G. St-Hilaire, C. Chambers, I. J. Arnquist, Lorenzo Fabris, J.-L. Vuilleumier, N. Roy, Yuehe Lin, U. Wichoski, L. Cao, David Moore, B. T. Cleveland, John L. Orrell, S. Kravitz, F. Nolet, Veljko Radeka, Jens Dilling, B. Mong, M. Wagenpfeil, J. Dalmasson, T. Ziegler, J. P. Brodsky, T. Bhatta, P. C. Rowson, A.C. Odian, I. Badhrees, M. Heffner, Z. Li, Gerrit Wrede, D. Fudenberg, S. X. Wu, M. Tarka, F. Vachon, G. Li, Douglas H Beck, L. J. Wen, S. Parent, Samuele Sangiorgio, A. House, David Leonard, W. Cree, L. Darroch, J. Todd, G. Gallina, Y-R Yen, Thomas Koffas, W. M. Fairbank, I. Ostrovskiy, K. S. Kumar, D. A. Harris, X.L. Sun, J. B. Zhao, S. Delaquis, T. Stiegler, A. Kuchenkov, M. J. Dolinski, X. F. Wu, A. Larson, Yunyan Zhou, O. Njoya, E. V. Hansen, Giorgio Gratta, K. Skarpaas, Ethan Brown, A. Iverson, Triveni Rao, M. Weber, Shu Li, A. Karelin, P. Hufschmidt, David A. Sinclair, Wei Wu, R.J. Newby, T. Rossignol, M. J. Jewell, Qun-Yao Wang, Zhijun Ning, Y. Ito, L. J. Kaufman, Wei Wei, Rejean Fontaine, S. J. Daugherty, F. Bourque, Y. Lan, Liang Yang, R. Tsang, A. Jamil, S. Feyzbakhsh, C. Licciardi, W. R. Cen, R. Gornea, Guofu Cao, E. Raguzin, J. Farine, Eric W. Hoppe, Gerard Visser, A. Burenkov, T. Brunner, Arun Kumar Soma, Justin Albert, J. Watkins, V.N. Stekhanov, M. Coon, A. Pocar, Cory T. Overman, T. Tsang, A. Craycraft, Venkatesh Veeraraghavan, F. Retiere, Angelo Dragone, Jochen M. Schneider, Qing Xia, X. Zhang, M. Chiu, J. Hößl, P. S. Barbeau, G. S. Ortega, Jean-Francois Pratte, V. A. Belov, M. Oriunno, Serge A. Charlebois, T. I. Totev, K. Murray, Gisela Anton, T. Walton, J. Daughhetee, A. E. Robinson, K. Odgers, M. Côté, Thilo Michel, and Gabriele Giacomini
- Subjects
Physics ,Sapphire window ,Multidisciplinary ,010308 nuclear & particles physics ,Analytical chemistry ,chemistry.chemical_element ,Barium ,01 natural sciences ,Particle identification ,Background level ,Xenon ,chemistry ,Double beta decay ,0103 physical sciences ,Atom ,Neutrino ,010306 general physics - Abstract
Author(s): Chambers, C; Walton, T; Fairbank, D; Craycraft, A; Yahne, DR; Todd, J; Iverson, A; Fairbank, W; Alamare, A; Albert, JB; Anton, G; Arnquist, IJ; Badhrees, I; Barbeau, PS; Beck, D; Belov, V; Bhatta, T; Bourque, F; Brodsky, JP; Brown, E; Brunner, T; Burenkov, A; Cao, GF; Cao, L; Cen, WR; Charlebois, SA; Chiu, M; Cleveland, B; Coon, M; Cree, W; Cote, M; Dalmasson, J; Daniels, T; Darroch, L; Daugherty, SJ; Daughhetee, J; Delaquis, S; Mesrobian-Kabakian, A Der; DeVoe, R; Dilling, J; Ding, YY; Dolinski, MJ; Dragone, A; Echevers, J; Fabris, L; Farine, J; Feyzbakhsh, S; Fontaine, R; Fudenberg, D; Giacomini, G; Gornea, R; Gratta, G; Hansen, EV; Heffner, M; Hoppe, EW; Hosl, J; House, A; Hufschmidt, P; Hughes, M; Ito, Y; Jamil, A; Jessiman, C; Jewell, MJ; Jiang, XS; Karelin, A; Kaufman, LJ; Kodroff, D; Koffas, T; Kravitz, S; Krucken, R; Kuchenkov, A; Kumar, KS; Lan, Y; Larson, A; Leonard, DS; Li, G; Li, S; Li, Z; Licciardi, C; Lin, YH; Lv, P; MacLellan, R; Michel, T; Mong, B; Moore, DC | Abstract: The search for neutrinoless double beta decay probes the fundamental properties of neutrinos, including whether or not the neutrino and antineutrino are distinct. Double beta detectors are large and expensive, so background reduction is essential for extracting the highest sensitivity. The identification, or 'tagging', of the $^{136}$Ba daughter atom from double beta decay of $^{136}$Xe provides a technique for eliminating backgrounds in the nEXO neutrinoless double beta decay experiment. The tagging scheme studied in this work utilizes a cryogenic probe to trap the barium atom in solid xenon, where the barium atom is tagged via fluorescence imaging in the solid xenon matrix. Here we demonstrate imaging and counting of individual atoms of barium in solid xenon by scanning a focused laser across a solid xenon matrix deposited on a sapphire window. When the laser sits on an individual atom, the fluorescence persists for $\sim$30~s before dropping abruptly to the background level, a clear confirmation of one-atom imaging. No barium fluorescence persists following evaporation of a barium deposit to a limit of $\leq$0.16\%. This is the first time that single atoms have been imaged in solid noble element. It establishes the basic principle of a barium tagging technique for nEXO.
- Published
- 2019
3. Reflectivity of VUV-sensitive Silicon Photomultipliers in Liquid Xenon
- Author
-
M. Heffner, Thilo Michel, M. Hughes, F. Vachon, Jean-Francois Pratte, Aleksey E. Bolotnikov, A. Craycraft, R. DeVoe, C. Gingras, C.R. Natzke, A. De St. Croix, T. I. Totev, K. Murray, Gisela Anton, J. C. Nzobadila Ondze, S. Al Kharusi, R. Saldanha, O. Nusair, J. Ringuette, R. Krücken, W. M. Fairbank, M. Worcester, A. Der Mesrobian-Kabakian, N. Massacret, Lorenzo Fabris, David Moore, Wen-Qi Yan, K. Harouaka, R. Gornea, E. Hansen, C. T. Overman, Samuele Sangiorgio, I. Ostrovskiy, H. Rasiwala, M. Tarka, K. S. Kumar, M. Elbeltagi, R. Tsang, A. Larson, John L. Orrell, T. Daniels, E. Caden, F. Retière, Z. Li, Mike Richman, N. Roy, S. Feyzbakhsh, G. Giacomini, M. Murra, G. Li, E. Raguzin, A. Pocar, A. Iverson, Ethan Brown, B. Mong, C. Licciardi, F. Nolet, J. P. Brodsky, A. Tidball, T. McElroy, Shu Li, T. Rossignol, V. A. Belov, R. MacLellan, O. Zeldovich, M. Medina Peregrina, A. Karelin, B. T. Cleveland, K. Odgers, I. Badhrees, Venkatesh Veeraraghavan, D. Fairbank, A. Kuchenkov, M. Wagenpfeil, M. Walent, Giorgio Gratta, Qing Xia, Sergio Ferrara, C. Vivo-Vilches, D. Schulte, Govinda Adhikari, G. S. Ortega, J. Todd, Arun Kumar Soma, C. Weinheimer, T. Brunner, D. S. Leonard, Serge A. Charlebois, A. Odian, L. Darroch, S. Rescia, C. Huhmann, M. J. Dolinski, M. J. Jewell, R. Lindsay, D. Chernyak, L. Althueser, V.N. Stekhanov, M. L. Di Vacri, T. Ziegler, Y. Lan, S. Parent, L. J. Kaufman, A. Gorham, S. X. Wu, P. A. Breur, J. Bane, A. E. Robinson, Eric W. Hoppe, J. Echevers, D. Goeldi, G.J. Ramonnye, Liang Yang, A. Jamil, S. Thibado, C. Richard, M. Chiu, J. Farine, P. Martel-Dion, Guofu Cao, T. Bhatta, J. Nattress, E. Angelico, B. Chana, Douglas H Beck, T. Stiegler, J. Schneider, K. Deslandes, P. C. Rowson, A. House, A. Fieguth, C.A. Hardy, U. Wichoski, S. Viel, G. Gallina, A. Piepke, I. J. Arnquist, P. Gautam, K. G. Leach, R.J. Newby, S. Triambak, F. Spadoni, and C. Chambers
- Subjects
Materials science ,Physics - Instrumentation and Detectors ,APDS ,chemistry.chemical_element ,FOS: Physical sciences ,01 natural sciences ,7. Clean energy ,030218 nuclear medicine & medical imaging ,law.invention ,03 medical and health sciences ,0302 clinical medicine ,Optics ,Silicon photomultiplier ,Xenon ,law ,0103 physical sciences ,Wafer ,Angular resolution ,Instrumentation ,Mathematical Physics ,010308 nuclear & particles physics ,business.industry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Avalanche photodiode ,chemistry ,Angle of incidence (optics) ,business - Abstract
Silicon photomultipliers are regarded as a very promising technology for next-generation, cutting-edge detectors for low-background experiments in particle physics. This work presents systematic reflectivity studies of Silicon Photomultipliers (SiPM) and other samples in liquid xenon at vacuum ultraviolet (VUV) wavelengths. A dedicated setup at the University of M\"unster has been used that allows to acquire angle-resolved reflection measurements of various samples immersed in liquid xenon with 0.45{\deg} angular resolution. Four samples are investigated in this work: one Hamamatsu VUV4 SiPM, one FBK VUV-HD SiPM, one FBK wafer sample and one Large-Area Avalanche Photodiode (LA-APD) from EXO-200. The reflectivity is determined to be 25-36% at an angle of incidence of 20{\deg} for the four samples and increases to up to 65% at 70{\deg} for the LA-APD and the FBK samples. The Hamamatsu VUV4 SiPM shows a decline with increasing angle of incidence. The reflectivity results will be incorporated in upcoming light response simulations of the nEXO detector., Comment: 18 pages, 11 figures
- Published
- 2021
4. Searching for low mass dark matter via phonon creation in superfluid He4
- Author
-
Douglas H Beck, Gordon Baym, Christopher J. Pethick, Jessie Shelton, and Jeffrey P. Filippini
- Subjects
Physics ,Condensed matter physics ,010308 nuclear & particles physics ,Scattering ,Phonon ,Dark matter ,Energy–momentum relation ,01 natural sciences ,Omega ,Superfluidity ,Condensed Matter::Materials Science ,Condensed Matter::Superconductivity ,0103 physical sciences ,Condensed Matter::Strongly Correlated Electrons ,Production (computer science) ,010306 general physics ,Low Mass - Abstract
We consider the scattering of dark matter particles from superfluid liquid $^{4}\mathrm{He}$, which has been proposed as a target for their direct detection. Focusing on dark matter masses below $\ensuremath{\sim}1\text{ }\text{ }\mathrm{MeV}$, we demonstrate from sum-rule arguments the importance of the production of single phonons with energies $\ensuremath{\omega}\ensuremath{\lesssim}1\text{ }\text{ }\mathrm{meV}$. We show further that the anomalous dispersion of phonons in liquid $^{4}\mathrm{He}$ at low pressures [i.e., ${d}^{2}\ensuremath{\omega}(q)/d{q}^{2}g0$, where $q$ and $\ensuremath{\omega}(q)$ are the phonon momentum and energy] has the important consequence that a single phonon will decay over a relatively short distance into a shower of lower-energy phonons centered on the direction of the original phonon. Thus, the experimental challenge in this regime is to detect a shower of low-energy phonons, not just a single phonon. Additional information from the distribution of phonons in such a shower could enhance the determination of the dark matter mass.
- Published
- 2020
5. Measurement of the Spectral Shape of the β -Decay of Xe137 to the Ground State of Cs137 in EXO-200 and Comparison with Theory
- Author
-
T. Tolba, E. V. Hansen, Qing Xia, A. Jamil, A. Pocar, S. Thibado, V. Veeraraghavan, C. Chambers, R. DeVoe, Petr Vogel, David Leonard, R. MacLellan, Thomas Koffas, D. Fudenberg, W. M. Fairbank, M. Coon, J. Davis, M. J. Jewell, T. Daniels, F. Retiere, V.N. Stekhanov, L. J. Kaufman, J. Farine, Jouni Suhonen, A. Piepke, J. Todd, R. Tsang, M. J. Dolinski, Jens Dilling, O. Nusair, L. Darroch, R. Krücken, U. Wichoski, M. Hughes, I. Badhrees, K. Skarpaas, J. Hoessl, V. Belov, A. Robinson, T. Bhatta, A. S. Johnson, T. Ziegler, S. Feyzbakhsh, W. R. Cen, K. Murray, S. Al Kharusi, O. Ya. Zeldovich, G. S. Li, R. Gornea, Martin Breidenbach, M. Wagenpfeil, Gisela Anton, P. Hufschmidt, David A. Sinclair, P. C. Rowson, S. X. Wu, B. Mong, J. L. Vuilleumier, Arun Kumar Soma, C. Licciardi, A. Der Mesrobian-Kabakian, Yuehe Lin, S. J. Daugherty, A. Odian, L. Yang, David Moore, Y. Lan, S. Delaquis, Z. Li, Guofu Cao, Giorgio Gratta, A. Larson, T. Brunner, C. R. Hall, A. Dolgolenko, Thilo Michel, C. Jessiman, I. Ostrovskiy, P. Nakarmi, A. Craycraft, K. S. Kumar, B. T. Cleveland, A. Kuchenkov, O. Njoya, B. G. Lenardo, J. Watkins, A. Iverson, D. R. Yahne, T. McElroy, A. Karelin, Shu Li, S. Schmidt, L. J. Wen, Marc Weber, D. Fairbank, B. Veenstra, J. Kostensalo, J. Echevers, Peter Fierlinger, T. I. Totev, Gerrit Wrede, M. Tarka, Douglas H Beck, P. S. Barbeau, Y-R Yen, D. Ruddell, J. Runge, and P. Gautam
- Subjects
Physics ,Spectral shape analysis ,General Physics and Astronomy ,Nuclear data ,Context (language use) ,Electron ,7. Clean energy ,01 natural sciences ,Spectral line ,0103 physical sciences ,Neutron source ,Atomic physics ,010306 general physics ,Ground state ,Energy (signal processing) - Abstract
We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden nonunique β-decay transition ^{137}Xe(7/2^{-})→^{137}Cs(7/2^{+}). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultralow background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal to background ratio of more than 99 to 1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden nonunique β-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the context of the reactor antineutrino anomaly and spectral bump.
- Published
- 2020
6. Morphometric analysis of sperm used for IVP by three different separation methods with spatial light interference microscopy
- Author
-
Mikhail E. Kandel, Sierra Schreiber, Gabriel Popescu, Douglas H Beck, Marcello Rubessa, Sasha Meyers, and Matthew B. Wheeler
- Subjects
Male ,endocrine system ,Biometry ,Urology ,medicine.medical_treatment ,Semen ,Cell Separation ,Semen analysis ,Biology ,Andrology ,medicine ,Animals ,reproductive and urinary physiology ,Sperm motility ,Microscopy ,In vitro fertilisation ,medicine.diagnostic_test ,urogenital system ,Artificial insemination ,Povidone ,Embryo ,Serum Albumin, Bovine ,Silicon Dioxide ,Sperm ,Spermatozoa ,Reproductive Medicine ,Cattle ,Percoll - Abstract
The goal of this study was to characterize sperm populations resulting from three different methods of sperm selection used for bovine in vitro fertilization. We compared sperm selection with discontinuous Percoll gradients, Swim-Up, and electro-channel. Spatial light interference microscopy (SLIM) was used to evaluate the morphology of the spermatozoa and computer-assisted semen analysis (CASA) was used to evaluate the motility behavior of the sperm. Using these two technologies, we analyzed morphometric parameters and the kinetic (motility) patterns of frozen-thawed Holstein bull spermatozoa after sperm selection. For the first time, we have shown that these methods used to select viable spermatozoa for in vitro fertilization (IVF) result in very different sperm subpopulations. Almost every parameter evaluated resulted in statistical differences between treatment groups. One novel observation was that the dry mass of the sperm head is heavier in spermatozoa selected with the electro-channel than in sperm selected by the other methods. These results show the potential of SLIM microscopy in reproductive biology.Abbreviations: SLIM: spatial light interference microscopy; CASA: computer aided sperm analysis; IVF: in vitro fertilization; BSA: bovine serum albumin; QPI: quantitative phase imaging; IVEP: in vitro embryo production; IACUC: institutional animal care and use committee; CSS: Certified Semen Services; AI: artificial insemination; TALP: Tyrode's Albumin Lactate Pyruvate; MEC: medium for electro-channel; PDMS: polydimethylsiloxane; EC: electro-channel; TM, %: total motility; PM, %: progressive motility; RM, %: percentage of rapid sperm motility; VAP, μm/s: average path velocity; VSL, μm/s: straight-line velocity; VCL, μm/s: curvilinear velocity; ALH, μm: amplitude of lateral head displacement; BCF, Hz: beat cross frequency; STR, %: straightness; LIN, %: and linearity; GLS: generalized least squares; ANOVA: analysis of variance; LSD: Least Significant Difference; SPSS: Statistical Package for the Social Sciences; PCA: principal components analysis.
- Published
- 2020
7. Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
- Author
-
Mario G. Lattanzi, Carlo Baccigalupi, François Levrier, J. M. Duval, J. Austermann, M. Brilenkov, B. Thorne, Eiichiro Komatsu, D. Rambaud, T. Nagasaki, Peter Shirron, H. Imada, Nozomu Kogiso, Jeff Van Lanen, H. Takakura, T. Kawasaki, Lionel Duband, Ingunn Kathrine Wehus, Y. Hoshino, Tadayasu Dotani, Enrique Martinez-Gonzalez, Tucker Elleflot, S. Beckman, T. Kaga, Shogo Nakamura, A. Kato, Giorgio Savini, S. Bounissou, S. Mandelli, Peter Charles Hargrave, Francois Boulanger, Julien Grain, S. Realini, Reijo Keskitalo, Bruno Maffei, Y. Nagano, Davide Maino, D. Herman, Michael R. Vissers, B. Mot, R. Banerji, N. Katayama, James A. Beall, Johannes Hubmayr, Tomotake Matsumura, Shugo Oguri, G. Patanchon, S. Basak, S. Takakura, Créidhe O'Sullivan, Massimo Gervasi, Y. Takase, S. Stever, A. Carones, Raphael Flauger, F. J. Casas, T. de Haan, Yasuhiro Murata, T. Prouvé, Douglas Scott, P. Vielva, Toshiya Namikawa, Mayu Tominaga, Yuki Sakurai, Luca Lamagna, Eric Hivon, S. Nerval, Ken Ebisawa, Noriko Y. Yamasaki, Julian Borrill, Shingo Kashima, Hajime Sugai, M. De Petris, R. Nagata, Ted Kisner, D. W. Curtis, A. Mennella, P. de Bernardis, Alexandre E. Adler, Misao Sasaki, Jiansong Gao, Kam Arnold, K. Ganga, T. Ghigna, Kazunori Kohri, Ben Westbrook, R. Aurlien, T. Toda, Yasuhiro Takeda, U. Fuskeland, Alessandro Gruppuso, Giuseppe Puglisi, A. Ritacco, I. Kreykenbohm, C. Leloup, M. A. Dobbs, Jochen Weller, Joel N. Ullom, Chao-Lin Kuo, M. Migliaccio, Charles A. Hill, E. Allys, Nicola Vittorio, T. Yoshida, R. Takaku, Thomas Essinger-Hileman, Alessandro Paiella, J. Aumont, Berend Winter, Junji Yumoto, Yutaka Terao, Aritoki Suzuki, T. Hasebe, Toshiyuki Nishibori, A. Cukierman, P. Campeti, Y. Hirota, Alan J. Kogut, Josquin Errard, S. Sugiyama, L. P. L. Colombo, Anthony Challinor, Yohei Kobayashi, A. Kushino, Gemma Luzzi, Makoto Nagai, M. Sandri, Christopher Raum, Giuseppe D'Alessandro, Masashi Hazumi, Masaya Hasegawa, Renée Hlozek, Silvia Masi, Joseph Seibert, F. Piacentini, J. A. Murphy, Greg Jaehnig, Jose Alberto Rubino-Martin, Davide Poletti, Michael L. Brown, Blake D. Sherwin, Daniela Paoletti, Joshua Montgomery, F. Columbro, Gianluca Morgante, J. Bermejo, M. Tomasi, Haruki Nishino, P. Diego-Palazuelos, Hirokazu Ishino, T. Iida, Kazuhisa Mitsuda, Haruyuki Sakurai, Keith L. Thompson, Javier Cubas, Neil Trappe, Keisuke Shinozaki, Adrian T. Lee, Hiroyuki Ohsaki, Martina Gerbino, D. Herranz, M. Tsuji, Marco Bersanelli, Nadia Dachlythra, M. Russell, E. Gjerløw, Maresuke Shiraishi, E. de la Hoz, Eric V. Linder, Graeme Smecher, Eric R. Switzer, Erminia Calabrese, G. Roudil, Mario Zannoni, T. Maciaszek, L. Pagano, D. Auguste, Frank Grupp, Kosei Ishimura, Fabrizio Villa, Kuniaki Konishi, I. S. Ohta, G. Signorelli, J. Bonis, A. Tartari, Jun-ichi Suzuki, R. B. Barreiro, J. F. Cliche, M. Maki, Douglas H Beck, Ricardo Genova-Santos, A. J. Banday, M. Galloway, T. L. Svalheim, Fabio Finelli, L. A. Montier, H. K. Eriksen, Nicoletta Krachmalnicoff, Karen C. Cheung, Cristian Franceschet, Matthieu Tristram, V. Chan, G. Polenta, Clive Dickinson, N. W. Halverson, Kiyotomo Ichiki, Yuji Chinone, Mathieu Remazeilles, Giampaolo Pisano, Jon E. Gudmundsson, J. Peloton, M. Reinecke, Shannon M. Duff, Carole Tucker, Y. Minanmi, Gene C. Hilton, Martin Bucher, P. A. R. Ade, G. Vermeulen, K. Komatsu, Norio Okada, Thibaut Louis, Sophie Henrot-Versille, Edward J. Wollack, Paolo Natoli, Hideo Ogawa, Jörn Wilms, E. Taylor, Andrea Zonca, Makoto Hattori, Radek Stompor, Masahiro Tsujimoto, Yutaro Sekimoto, Marcin Gradziel, H. Thommesen, Zmuidzinas, Jonas, Sekimoto, Y, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, J, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minanmi, Y, Mitsuda, K, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, O'Sullivan, C, Ogawa, H, Oguri, S, Osaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Pisano, G, Polenta, G, Poletti, D, Prouvé, T, Puglisi, G, Tambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stever, S, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, Zonca, A, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de l'ENS (LPTENS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Paris (OP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), LiteBIRD, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] (LPTENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), and Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Aperture ,FOS: Physical sciences ,7. Clean energy ,cryogenic telescope ,law.invention ,Cosmic microwave background ,Entrance pupil ,Telescope ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Optics ,millimeter-wave polarization ,space program ,Settore FIS/05 - Astronomia e Astrofisica ,law ,Angular resolution ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Stray light ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,Lens (optics) ,Cardinal point ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of $-56$ dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view ($18^\circ \times 9^\circ$) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90$^\circ$ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at $5\,$K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented., Comment: 21 pages, 14 figures
- Published
- 2020
8. Event Reconstruction in a Liquid Xenon Time Projection Chamber with an Optically-Open Field Cage
- Author
-
B. Chana, N. Roy, L. Cao, O. Nusair, G. St-Hilaire, Douglas H Beck, R. Krücken, F. Nolet, E. Raguzin, P. A. Breur, T. McElroy, T. Bhatta, L. J. Kaufman, Gerard Visser, D. Goeldi, M. Coon, Eric W. Hoppe, F. Vachon, Z. Li, C. Chambers, Veljko Radeka, Cory T. Overman, L. J. Wen, J. L. Vuilleumier, Samuele Sangiorgio, L. Darroch, P. Gautam, P. Nakarmi, Kaixuan Ni, K. S. Kumar, A. De St. Croix, R. Tsang, Haijun Yang, E. V. Hansen, P. Lv, E. Caden, S. X. Wu, J. Hößl, P. S. Barbeau, Lorenzo Fabris, I. J. Arnquist, R. Gornea, P. C. Rowson, V.N. Stekhanov, X. S. Jiang, C. Licciardi, A. Jamil, A. House, A. Piepke, J. Todd, G. Gallina, S. Thibado, Y. Y. Ding, A. Der Mesrobian-Kabakian, N. Massacret, M. Heffner, R. MacLellan, S. Viel, M. Worcester, Thilo Michel, V. Veeraraghavan, Qing Xia, M. Hughes, G. Li, Sergio Ferrara, S. Al Kharusi, R. DeVoe, A. Pocar, M. Walent, B. G. Lenardo, Arun Kumar Soma, S. Feyzbakhsh, Y. Lan, G. S. Ortega, B. T. Cleveland, K. Deslandes, T. Brunner, A. Kuchenkov, M. Medina-Peregrina, Serge A. Charlebois, F. Retiere, David Moore, M. Chiu, J. P. Brodsky, M. Tarka, F. Edaltafar, T. Wager, K. G. Leach, Wei Wu, R.J. Newby, Qun-Yao Wang, Zhijun Ning, M. Oriunno, Aleksey E. Bolotnikov, K. Murray, Gisela Anton, K. Odgers, B. Mong, M. J. Dolinski, David Leonard, Thomas Koffas, W. M. Fairbank, T. Tsang, T. Stiegler, Jean-Francois Pratte, Angelo Dragone, M. Elbeltagi, John L. Orrell, T. Daniels, Wei Wei, H. Rasiwala, I. Ostrovskiy, Yu-Guang Zhou, S. Rescia, D. Fairbank, Guofu Cao, Mike Richman, O. Njoya, T. I. Totev, A. Iverson, K. Skarpaas Viii, Shu Li, Giorgio Gratta, U. Wichoski, L. Yang, T. Rossignol, M. J. Jewell, A. Craycraft, T. Ziegler, Gabriele Giacomini, J. Echevers, Jens Dilling, C.R. Natzke, I. Badhrees, A. Tidball, M. L. di Vacri, C. Vivo-Vilches, S. Parent, A. Odian, O. Zeldovich, R. Saldanha, M. Wagenpfeil, J. Dalmasson, X.L. Sun, J. B. Zhao, X. F. Wu, A. Larson, Ethan Brown, A. Karelin, J. Farine, V. Belov, and A. Robinson
- Subjects
Physics ,Nuclear and High Energy Physics ,Scintillation ,Photon ,Time projection chamber ,Physics - Instrumentation and Detectors ,Field (physics) ,010308 nuclear & particles physics ,chemistry.chemical_element ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,Xenon ,chemistry ,Double beta decay ,Ionization ,0103 physical sciences ,Atomic physics ,010306 general physics ,Instrumentation ,Event reconstruction - Abstract
nEXO is a proposed tonne-scale neutrinoless double beta decay ($0\nu\beta\beta$) experiment using liquid ${}^{136}Xe$ (LXe) in a Time Projection Chamber (TPC) to read out ionization and scintillation signals. Between the field cage and the LXe vessel, a layer of LXe ("skin" LXe) is present, where no ionization signal is collected. Only scintillation photons are detected, owing to the lack of optical barrier around the field cage. In this work, we show that the light originating in the skin LXe region can be used to improve background discrimination by 5% over previous published estimates. This improvement comes from two elements. First, a fraction of the $\gamma$-ray background is removed by identifying light from interactions with an energy deposition in the skin LXe. Second, background from ${}^{222}Rn$ dissolved in the skin LXe can be efficiently rejected by tagging the $\alpha$ decay in the ${}^{214}Bi-{}^{214}Po$ chain in the skin LXe., Comment: 11 pages, 12 figures
- Published
- 2020
- Full Text
- View/download PDF
9. Search for Neutrinoless Double-Beta Decay with the Complete EXO-200 Dataset
- Author
-
D. R. Yahne, B. T. Cleveland, A. Kuchenkov, V.N. Stekhanov, C. Chambers, J. Watkins, J. Farine, C. R. Hall, A. Dolgolenko, D. Fudenberg, A. Craycraft, Peter Fierlinger, Gerrit Wrede, M. Tarka, J. Hoessl, Jens Dilling, D. Ruddell, V. Belov, I. Badhrees, L. Darroch, R. MacLellan, A. Robinson, A. Karelin, Qing Xia, Thilo Michel, J. Runge, Yuehe Lin, A. Odian, M. Hughes, R. DeVoe, M. Wagenpfeil, U. Wichoski, L. J. Kaufman, I. Ostrovskiy, Z. Li, B. G. Lenardo, Petr Vogel, A. Pocar, T. Ziegler, M. Danilov, T. Brunner, David Leonard, Giorgio Gratta, A. Piepke, J. Todd, A. Larson, O. Nusair, R. Krücken, P. S. Barbeau, O. Njoya, Thomas Koffas, K. S. Kumar, S. X. Wu, David Moore, J. L. Vuilleumier, W. M. Fairbank, O. Ya. Zeldovich, A. Iverson, M. J. Dolinski, P. Gautam, Shu Li, S. Schmidt, J. Davis, C. Jessiman, W. R. Cen, B. Mong, Y. Lan, R. Gornea, E. V. Hansen, T. Tolba, M. J. Jewell, F. Retiere, A. S. Johnson, Liang Yang, A. Jamil, M. Coon, Douglas H Beck, T. Daniels, Guofu Cao, Y-R Yen, S. Feyzbakhsh, Arun Kumar Soma, G. S. Li, P. Hufschmidt, David A. Sinclair, D. Fairbank, C. Licciardi, A. Der Mesrobian-Kabakian, J. Echevers, B. Veenstra, T. I. Totev, T. McElroy, L. J. Wen, Marc Weber, Martin Breidenbach, S. J. Daugherty, T. Bhatta, V. Veeraraghavan, K. Murray, Gisela Anton, P. C. Rowson, and S. Delaquis
- Subjects
Physics ,Q value ,Resolution (electron density) ,Detector ,General Physics and Astronomy ,FOS: Physical sciences ,01 natural sciences ,Lower limit ,ddc ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Energy (signal processing) - Abstract
A search for neutrinoless double-beta decay ($0\nu\beta\beta$) in $^{136}$Xe is performed with the full EXO-200 dataset using a deep neural network to discriminate between $0\nu\beta\beta$ and background events. Relative to previous analyses, the signal detection efficiency has been raised from 80.8% to 96.4$\pm$3.0% and the energy resolution of the detector at the Q-value of $^{136}$Xe $0\nu\beta\beta$ has been improved from $\sigma/E=1.23\%$ to $1.15\pm0.02\%$ with the upgraded detector. Accounting for the new data, the median 90% confidence level $0\nu\beta\beta$ half-life sensitivity for this analysis is $5.0 \cdot 10^{25}$ yr with a total $^{136}$Xe exposure of 234.1 kg$\cdot$yr. No statistically significant evidence for $0\nu\beta\beta$ is observed, leading to a lower limit on the $0\nu\beta\beta$ half-life of $3.5\cdot10^{25}$ yr at the 90% confidence level., Comment: v1, 7 pages, 5 figures; v2, fix references; v3, update to accepted version
- Published
- 2019
10. Characterization of the Hamamatsu VUV4 MPPCs for nEXO
- Author
-
P. Giampa, G. Li, D. Kodroff, M. Wagenpfeil, J. Dalmasson, Eric W. Hoppe, N. Roy, David Leonard, J. Blatchford, Thomas Koffas, E. V. Hansen, W. M. Fairbank, P. Gautam, B. T. Cleveland, K. Odgers, L. Cao, Liang Yang, A. Jamil, S. Rescia, T. Stiegler, E. Raguzin, M. Elbeltagi, R. MacLellan, A. Kuchenkov, Arun Kumar Soma, F. Nolet, X.L. Sun, T. Bhatta, D. Fairbank, J. B. Zhao, T. McElroy, A. Larson, Jean-Francois Pratte, B. Mong, F. Vachon, Marc Weber, G. St-Hilaire, P. Margetak, P. Nakarmi, M. Chiu, J. Farine, J. Echevers, C. Chambers, G. Zhang, M. Oriunno, P. C. Rowson, A. Robinson, I. J. Arnquist, S. X. Wu, Douglas H Beck, Qing Xia, U. Wichoski, Ethan Brown, A. House, K. Murray, Y-R Yen, L. Darroch, G. S. Ortega, R. DeVoe, Gisela Anton, T. Ziegler, O. Zeldovich, J. P. Brodsky, T. I. Totev, M. Heffner, Qun-Yao Wang, T. Tolba, W. R. Cen, S. J. Daugherty, A. De St. Croix, G. Gallina, R. Gornea, Serge A. Charlebois, T. Rossignol, Zhijun Ning, M. Tarka, M. J. Jewell, Lorenzo Fabris, J. L. Vuilleumier, M. Walent, John L. Orrell, T. Daniels, R. Tsang, B. G. Lenardo, T. Brunner, K. Skarpaas, P. Lv, V. Veeraraghavan, A. Karelin, J. Todd, Y. Y. Ding, O. Nusair, R. Krücken, Veljko Radeka, Wei Wu, R.J. Newby, M. Hughes, R. Saldanha, S. Al Kharusi, Giorgio Gratta, Martin Ward, He-Run Yang, David Moore, M. Alfaris, S. Feyzbakhsh, A. Craycraft, Y. Ito, L. J. Kaufman, Y. Lan, Yuehe Lin, Z. Li, Samuele Sangiorgio, Wei Wei, F. Retière, K. S. Kumar, J. Hößl, P. S. Barbeau, V. A. Belov, Thilo Michel, J. Kroeger, Xuan Wu, A. Pocar, A. Piepke, V.N. Stekhanov, D. Qiu, M. Coon, Cory T. Overman, T. Tsang, Angelo Dragone, Gabriele Giacomini, Jens Dilling, I. Badhrees, S. Parent, A. Odian, I. Ostrovskiy, Gerard Visser, Mike Richman, O. Njoya, A. Iverson, Shu Li, J. Watkins, M. Medina-Peregrina, X. S. Jiang, C. Licciardi, A. Der Mesrobian-Kabakian, Yu-Guang Zhou, Liangjian Wen, Luca Doria, Guofu Cao, Rejean Fontaine, and M. J. Dolinski
- Subjects
010302 applied physics ,Physics ,Nuclear and High Energy Physics ,Scintillation ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Analytical chemistry ,FOS: Physical sciences ,chemistry.chemical_element ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,Xenon ,chemistry ,0103 physical sciences ,Saturation (graph theory) ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instrumentation ,Photon detection ,Dark current - Abstract
In this paper we report on the characterization of the Hamamatsu VUV4 (S/N: S13370-6152) Vacuum Ultra-Violet (VUV) sensitive Multi-Pixel Photon Counters (MPPC)s as part of the development of a solution for the detection of liquid xenon scintillation light for the nEXO experiment. Various MPPC features, such as: dark noise, gain, correlated avalanches, direct crosstalk and Photon Detection Efficiency (PDE) were measured in a dedicated setup at TRIUMF. MPPCs were characterized in the range 163 K ≤ T ≤ 233 K . At an over voltage of 3 . 1 ± 0 . 2 V and at T = 163 K we report a number of Correlated Avalanches (CAs) per pulse in the 1 μ s interval following the trigger pulse of 0 . 161 ± 0 . 005 . At the same settings the Dark-Noise (DN) rate is 0 . 137 ± 0 . 002 Hz/mm 2 . Both the number of CAs and the DN rate are within nEXO specifications. The PDE of the Hamamatsu VUV4 was measured for two different devices at T = 233 K for a mean wavelength of 189 ± 7 nm . At 3 . 6 ± 0 . 2 V and 3 . 5 ± 0 . 2 V of over voltage we report a PDE of 13 . 4 ± 2 . 6 % and 11 ± 2 % , corresponding to a saturation PDE of 14 . 8 ± 2 . 8 % and 12 . 2 ± 2 . 3 % , respectively. Both values are well below the 24 % saturation PDE advertised by Hamamatsu. More generally, the second device tested at 3 . 5 ± 0 . 2 V of over voltage is below the nEXO PDE requirement. The first one instead yields a PDE that is marginally close to meeting the nEXO specifications. This suggests that with modest improvements the Hamamatsu VUV4 MPPCs could be considered as an alternative to the FBK-LF Silicon Photo-Multipliers for the final design of the nEXO detector.
- Published
- 2019
11. Reflectance of Silicon Photomultipliers at Vacuum Ultraviolet Wavelengths
- Author
-
E. Caden, S. Rescia, D. Fairbank, G. St-Hilaire, Thilo Michel, A. Craycraft, Jens Dilling, I. Badhrees, A. De St. Croix, X. S. Jiang, C. Licciardi, J. Farine, M. Walent, S. Feyzbakhsh, V. Belov, C.R. Natzke, B. G. Lenardo, A. Robinson, P. Nakarmi, A. Der Mesrobian-Kabakian, T. Brunner, L. Darroch, J. Echevers, Xuan Wu, S. Parent, A. Odian, A. Fucarino, Jean-Francois Pratte, Yu-Guang Zhou, E. Raguzin, T. Rossignol, Z. Li, O. Nusair, J. L. Vuilleumier, R. Krücken, M. Hughes, V. Veeraraghavan, M. J. Jewell, R. Saldanha, T. I. Totev, P. A. Breur, K. Skarpaas, Gerard Visser, S. Al Kharusi, I. Ostrovskiy, B. T. Cleveland, A. Kuchenkov, Liangjian Wen, Luca Doria, Guofu Cao, Samuele Sangiorgio, Wei Wei, K. S. Kumar, Mike Richman, David Moore, O. Njoya, A. Iverson, T. Bhatta, M. Chiu, G. S. Li, Thomas Tsang, Shu Li, Y. Lan, B. Chana, Douglas H Beck, L. Yang, M. Oriunno, J. P. Brodsky, P. S. Barbeau, He-Run Yang, R. DeVoe, K. Murray, J. Watkins, M. Tarka, Gisela Anton, R. Tsang, M. L. di Vacri, K. Odgers, M. J. Dolinski, M. Medina-Peregrina, C. Vivo-Vilches, F. Retiere, U. Wichoski, Sergio Ferrara, O. Zeldovich, K. G. Leach, T. Ziegler, R. Gornea, K. Deslandes, David Leonard, Giorgio Gratta, Thomas Koffas, W. M. Fairbank, Wei Wu, R.J. Newby, P. C. Rowson, T. Stiegler, M. Elbeltagi, Lorenzo Fabris, J. Hobl, A. House, N. Roy, L. Cao, F. Nolet, N. Massacret, T. McElroy, S. X. Wu, F. Vachon, C. Chambers, R. MacLellan, A. Pocar, V.N. Stekhanov, P. Gautam, F. Edaltafar, D. Goeldi, M. Coon, I. J. Arnquist, J. Runge, Cory T. Overman, M. Heffner, S. Viel, G. Gallina, Angelo Dragone, Gabriele Giacomini, P. Lv, A. Piepke, J. Todd, Y. Y. Ding, Veljko Radeka, T. Wager, Qun-Yao Wang, Zhijun Ning, E. V. Hansen, A. Jamil, Arun Kumar Soma, Qing Xia, S. Byrne Mamahit, Ethan Brown, A. Karelin, G. S. Ortega, M. Wagenpfeil, J. Dalmasson, X.L. Sun, J. B. Zhao, A. Larson, Serge A. Charlebois, John L. Orrell, T. Daniels, B. Mong, L. J. Kaufman, and Eric W. Hoppe
- Subjects
Nuclear and High Energy Physics ,Materials science ,Physics - Instrumentation and Detectors ,Silicon ,chemistry.chemical_element ,Photodetector ,FOS: Physical sciences ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Xenon ,Silicon photomultiplier ,0103 physical sciences ,Wafer ,Electrical and Electronic Engineering ,010308 nuclear & particles physics ,business.industry ,Instrumentation and Detectors (physics.ins-det) ,Nuclear Energy and Engineering ,chemistry ,Optoelectronics ,Diffuse reflection ,Photonics ,business ,Refractive index - Abstract
Characterization of the vacuum ultraviolet (VUV) reflectance of silicon photomultipliers (SiPMs) is important for large-scale SiPM-based photodetector systems. We report the angular dependence of the specular reflectance in a vacuum of SiPMs manufactured by Fondazionc Bruno Kessler (FBK) and Hamamatsu Photonics K.K. (HPK) over wavelengths ranging from 120 nm to 280 nm. Refractive index and extinction coefficient of the thin silicon-dioxide film deposited on the surface of the FBK SiPMs are derived from reflectance data of a FBK silicon wafer with the same deposited oxide film as SiPMs. The diffuse reflectance of SiPMs is also measured at 193 nm. We use the VUV spectral dependence of the optical constants to predict the reflectance of the FBK silicon wafer and FBK SiPMs in liquid xenon.
- Published
- 2019
- Full Text
- View/download PDF
12. Simulation of charge readout with segmented tiles in nEXO
- Author
-
F. Retière, M. Medina-Peregrina, Venkatesh Veeraraghavan, J. Hößl, Gerard Visser, J. L. Vuilleumier, L. Darroch, M. Chiu, J. Watkins, V. A. Belov, Yang Haibo, A. De St. Croix, V. Radeka, D. Fairbank, T. McElroy, T. Bhatta, A. Pocar, D. S. Leonard, J. Echevers, E. Caden, A. Craycraft, R. DeVoe, Lorenzo Fabris, C. T. Overman, E. Raguzin, C. Vivo-Vilches, Qing Xia, M. J. Jewell, Xiaoyang Sun, R. Gornea, J. Dalmasson, S. Feyzbakhsh, P. Gautam, G. S. Ortega, A. Piepke, I. Ostrovskiy, P. Lv, M. Hughes, Thilo Michel, T. Ziegler, C.R. Natzke, Z. Ning, Xuan Wu, F. Vachon, Sergio Ferrara, Serge A. Charlebois, S. X. Wu, V.N. Stekhanov, M. Walent, S. Al Kharusi, J. B. Zhao, A. Larson, A. Der Mesrobian-Kabakian, A. E. Robinson, Mike Richman, B. G. Lenardo, T. Brunner, A. Fucarino, David Moore, N. Roy, L. Cao, F. Nolet, J. Todd, M. Heffner, D. Kodroff, T. Tolba, Jean-Francois Pratte, M. Oriunno, John L. Orrell, T. Daniels, B. Mong, Rejean Fontaine, Ethan Brown, Qian Wang, Y. Lan, K. Murray, G. Giacomini, T. Stiegler, O. Njoya, A. Iverson, K. Skarpaas Viii, Thomas Tsang, R. Saldanha, Shu Li, Y. Y. Ding, Z. Li, Gisela Anton, O. Zeldovich, Marc Weber, E. Hansen, A. Karelin, O. Nusair, R. Krücken, Jens Dilling, R. MacLellan, B. Chana, Giorgio Gratta, P. S. Barbeau, Yumei Zhou, I. Badhrees, R. Tsang, Martin Ward, T. I. Totev, D. Goeldi, M. Coon, Liangjian Wen, Douglas H Beck, Guofu Cao, Angelo Dragone, W. R. Cen, S. J. Daugherty, Thomas Koffas, Xiaoshan Jiang, W. M. Fairbank, M. Elbeltagi, Y-R Yen, S. Rescia, M. J. Dolinski, A. Odian, S. Parent, J. Runge, J. P. Brodsky, P. Nakarmi, U. Wichoski, S. Viel, C. Licciardi, G. Gallina, T. Rossignol, M. L. Di Vacri, L. J. Kaufman, Eric W. Hoppe, Liang Yang, A. Jamil, Arun Kumar Soma, Yuehe Lin, Samuele Sangiorgio, Wei Wei, K. S. Kumar, J. Farine, I. J. Arnquist, K. G. Leach, G. St-Hilaire, Wei Wu, R.J. Newby, P. C. Rowson, A. House, M. Tarka, G. Li, B. T. Cleveland, K. Odgers, A. Kuchenkov, M. Wagenpfeil, and C. Chambers
- Subjects
Physics ,Physics - Instrumentation and Detectors ,Time projection chamber ,010308 nuclear & particles physics ,Detector ,chemistry.chemical_element ,FOS: Physical sciences ,Charge (physics) ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,030218 nuclear medicine & medical imaging ,Anode ,Nuclear physics ,03 medical and health sciences ,0302 clinical medicine ,Xenon ,chemistry ,Double beta decay ,0103 physical sciences ,Beta (velocity) ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Instrumentation ,Mathematical Physics - Abstract
nEXO is a proposed experiment to search for the neutrino-less double beta decay ($0\nu\beta\beta$) of $^{136}$Xe in a tonne-scale liquid xenon time projection chamber (TPC). The nEXO TPC will be equipped with charge collection tiles to form the anode. In this work, the charge reconstruction performance of this anode design is studied with a dedicated simulation package. A multi-variate method and a deep neural network are developed to distinguish simulated $0\nu\beta\beta$ signals from backgrounds arising from trace levels of natural radioactivity in the detector materials. These simulations indicate that the nEXO TPC with charge-collection tiles shows promising capability to discriminate the $0\nu\beta\beta$ signal from backgrounds. The estimated half-life sensitivity for $0\nu\beta\beta$ decay is improved by $\sim$20$~(32)\%$ with the multi-variate~(deep neural network) methods considered here, relative to the sensitivity estimated in the nEXO pre-conceptual design report.
- Published
- 2019
- Full Text
- View/download PDF
13. Reflectivity and PDE of VUV4 Hamamatsu SiPMs in Liquid Xenon
- Author
-
Gerard Visser, M. Walent, B. G. Lenardo, T. Brunner, V. Veeraraghavan, T. Bhatta, Giorgio Gratta, F. Edaltafar, T. Rossignol, M. J. Jewell, J. Watkins, P. Nakarmi, Arun Kumar Soma, Ethan Brown, L. Darroch, O. Nusair, R. Krücken, S. X. Wu, David Leonard, J. Blatchford, E. Caden, Thomas Koffas, W. M. Fairbank, T. Stiegler, M. Elbeltagi, L. J. Kaufman, M. Hughes, X. S. Jiang, C. Licciardi, A. Craycraft, Eric W. Hoppe, S. Al Kharusi, A. Karelin, G. Gallina, P. Gautam, R. Saldanha, M. Chiu, J. L. Vuilleumier, T. Wager, A. Der Mesrobian-Kabakian, David Moore, C. Chambers, M. Oriunno, E. V. Hansen, M. Alfaris, M. Wagenpfeil, J. Dalmasson, Sergio Ferrara, R. MacLellan, Qun-Yao Wang, K. Murray, Gabriele Giacomini, I. J. Arnquist, Liang Yang, Y. Lan, U. Wichoski, C.R. Natzke, S. Feyzbakhsh, A. Jamil, Gisela Anton, J. Runge, Zhijun Ning, T. Ziegler, K. G. Leach, R. Tsang, X.L. Sun, J. B. Zhao, M. Heffner, K. Odgers, S. Viel, Wei Wu, R.J. Newby, A. Fucarino, A. Larson, Z. Li, B. Chana, Douglas H Beck, Samuele Sangiorgio, K. S. Kumar, Veljko Radeka, P. C. Rowson, A. House, N. Massacret, Jean-Francois Pratte, P. Lv, J. Todd, Angelo Dragone, B. Mong, Y. Y. Ding, M. Ward, T. I. Totev, G. S. Li, M. L. di Vacri, R. DeVoe, C. Vivo-Vilches, Qing Xia, S. Byrne Mamahit, G. S. Ortega, R. Fontaine, J. Farine, Serge A. Charlebois, John L. Orrell, T. Daniels, V. Belov, A. Robinson, N. Roy, L. Cao, F. Nolet, T. McElroy, F. Vachon, Marc Weber, A. De St. Croix, Lorenzo Fabris, B. T. Cleveland, D. Goeldi, M. Coon, A. Kuchenkov, Cory T. Overman, S. Rescia, D. Fairbank, G. St-Hilaire, J. P. Brodsky, He-Run Yang, A. Piepke, M. Tarka, V.N. Stekhanov, J. Echevers, A. Pocar, O. Zeldovich, Yu-Guang Zhou, Liangjian Wen, Luca Doria, Guofu Cao, Thilo Michel, Wei Wei, I. Ostrovskiy, M. J. Dolinski, E. Raguzin, P. A. Breur, Xuan Wu, Mike Richman, F. Retière, O. Njoya, A. Iverson, M. Medina-Peregrina, J. Hößl, K. Skarpaas Viii, P. S. Barbeau, Thomas Tsang, Shu Li, R. Gornea, Jens Dilling, I. Badhrees, S. Parent, and A. Odian
- Subjects
Materials science ,Physics - Instrumentation and Detectors ,APDS ,Physics::Instrumentation and Detectors ,Photodetector ,chemistry.chemical_element ,FOS: Physical sciences ,Photodetection ,01 natural sciences ,030218 nuclear medicine & medical imaging ,law.invention ,High Energy Physics - Experiment ,03 medical and health sciences ,High Energy Physics - Experiment (hep-ex) ,0302 clinical medicine ,Silicon photomultiplier ,Optics ,Xenon ,law ,0103 physical sciences ,Specular reflection ,Instrumentation ,Mathematical Physics ,Scintillation ,010308 nuclear & particles physics ,business.industry ,Instrumentation and Detectors (physics.ins-det) ,Wavelength ,chemistry ,business - Abstract
Understanding reflective properties of materials and photodetection efficiency (PDE) of photodetectors is important for optimizing energy resolution and sensitivity of the next generation neutrinoless double beta decay, direct detection dark matter, and neutrino oscillation experiments that will use noble liquid gases, such as nEXO, DARWIN, DarkSide-20k, and DUNE. Little information is currently available about reflectivity and PDE in liquid noble gases, because such measurements are difficult to conduct in a cryogenic environment and at short enough wavelengths. Here we report a measurement of specular reflectivity and relative PDE of Hamamatsu VUV4 silicon photomultipliers (SiPMs) with 50 micrometer micro-cells conducted with xenon scintillation light (~175 nm) in liquid xenon. The specular reflectivity at 15 deg. incidence of three samples of VUV4 SiPMs is found to be 30.4+/-1.4%, 28.6+/-1.3%, and 28.0+/-1.3%, respectively. The PDE at normal incidence differs by +/-8% (standard deviation) among the three devices. The angular dependence of the reflectivity and PDE was also measured for one of the SiPMs. Both the reflectivity and PDE decrease as the angle of incidence increases. This is the first measurement of an angular dependence of PDE and reflectivity of a SiPM in liquid xenon., Comment: 21 pages, 15 figures, 6 tables. As accepted by JINST
- Published
- 2019
- Full Text
- View/download PDF
14. Deep Neural Networks for Energy and Position Reconstruction in EXO-200
- Author
-
P. C. Rowson, Y.-R. Yen, A. Pocar, Douglas H Beck, J. C. Davis, W. Cree, T. Richards, Venkatesh Veeraraghavan, S. Delaquis, P. Hufschmidt, R. Krücken, M. Hughes, A. P. Waite, A. Karelin, Thomas Koffas, David Moore, W. M. Fairbank, Arun Kumar Soma, P. S. Barbeau, D. Fudenberg, A. Piepke, A. Craycraft, David A. Sinclair, M. J. Dolinski, Yuehe Lin, R. Bayerlein, Martin Breidenbach, G. S. Li, S. J. Daugherty, J. Dalmasson, V.N. Stekhanov, G. Wrede, K. S. Kumar, Stefan Schmidt, M. Tarka, A. Der Mesrobian-Kabakian, D. A. Harris, B. Mong, T. Daniels, C. R. Hall, Y. Lan, R. DeVoe, C. Chambers, J. Farine, Giorgio Gratta, Mikhail Danilov, U. Wichoski, A. S. Johnson, J. Todd, B. T. Cleveland, W. R. Cen, A. Kuchenkov, T. Ziegler, T. Tolba, A. Robinson, M. Wagenpfeil, R. MacLellan, M. Coon, J. L. Vuilleumier, E. V. Hansen, M. J. Jewell, J. Watkins, Liang Yang, D. S. Leonard, A. Jamil, S. Feyzbakhsh, Thilo Michel, Qing Xia, P. Fierlinger, C. Licciardi, Liangjian Wen, Guofu Cao, K. Murray, Gisela Anton, T. Brunner, L. J. Kaufman, O. Ya. Zeldovich, A. Dolgolenko, J. Hoessl, A. Schubert, Marc Weber, J. Daughhetee, F. Retière, J. B. Albert, V. A. Belov, R. Gornea, I. Ostrovskiy, O. Njoya, A. Iverson, Shu Li, Jens Dilling, I. Badhrees, A. Odian, and S. Kravitz
- Subjects
Physics - Instrumentation and Detectors ,Artificial neural network ,010308 nuclear & particles physics ,Computer science ,Calibration (statistics) ,Monte Carlo method ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Position (vector) ,0103 physical sciences ,Pattern recognition (psychology) ,Waveform ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Instrumentation ,Algorithm ,Nuclear Experiment ,Mathematical Physics ,Energy (signal processing) ,Event reconstruction - Abstract
We apply deep neural networks (DNN) to data from the EXO-200 experiment. In the studied cases, the DNN is able to reconstruct the relevant parameters - total energy and position - directly from raw digitized waveforms, with minimal exceptions. For the first time, the developed algorithms are evaluated on real detector calibration data. The accuracy of reconstruction either reaches or exceeds what was achieved by the conventional approaches developed by EXO-200 over the course of the experiment. Most existing DNN approaches to event reconstruction and classification in particle physics are trained on Monte Carlo simulated events. Such algorithms are inherently limited by the accuracy of the simulation. We describe a unique approach that, in an experiment such as EXO-200, allows to successfully perform certain reconstruction and analysis tasks by training the network on waveforms from experimental data, either reducing or eliminating the reliance on the Monte Carlo., Accepted version. 33 pages, 28 figures
- Published
- 2018
15. Search for nucleon decays with EXO-200
- Author
-
M. Hughes, E. V. Hansen, A. P. Waite, Simon Johnston, T. Tolba, A.C. Odian, Liang Yang, A. Jamil, C. R. Hall, David Moore, O. Ya. Zeldovich, G. S. Li, T. Didberidze, B. T. Cleveland, L. J. Kaufman, Martin Breidenbach, R. MacLellan, M. Coon, S. J. Daugherty, R. DeVoe, R. H. Nelson, A. Pocar, U. Wichoski, Arun Kumar Soma, C. Chambers, P. C. Rowson, Petr Vogel, P. S. Barbeau, Guofu Cao, M. Danilov, M. J. Jewell, T. Ziegler, W. Cree, Yuehe Lin, David Leonard, V. A. Belov, Thomas Koffas, W. M. Fairbank, S. Delaquis, F. Retiere, K. S. Kumar, J. Zettlemoyer, S. Feyzbakhsh, V.N. Stekhanov, Douglas H Beck, J. C. Davis, Y-R Yen, A. Craycraft, B. Mong, D. Fudenberg, Samuel Homiller, J. Daughhetee, A. Piepke, K. Graham, M. J. Dolinski, C. Licciardi, A. Der Mesrobian-Kabakian, Peter Fierlinger, R. Bayerlein, Gerrit Wrede, A. Johnson, Thilo Michel, A. Karelin, Giorgio Gratta, M. Tarka, J. Farine, A. Dolgolenko, K. Murray, Y. Lan, J. Hoessl, P. Hufschmidt, M. Wagenpfeil, David A. Sinclair, Gisela Anton, A. Robinson, T. Walton, T. Brunner, Alexis G. Schubert, A. Kuchenkov, Justin Albert, R. Tsang, W. R. Cen, R. Gornea, L. J. Wen, Marc Weber, R. Krücken, Jens Dilling, I. Badhrees, T. Daniels, J.-L. Vuilleumier, S. Kravitz, I. Ostrovskiy, O. Njoya, Shu Li, and S. Schmidt
- Subjects
Particle physics ,Physics - Instrumentation and Detectors ,Hadron ,FOS: Physical sciences ,Elementary particle ,nucl-ex ,01 natural sciences ,Atomic ,High Energy Physics - Experiment ,Nuclear physics ,Particle decay ,High Energy Physics - Experiment (hep-ex) ,Particle and Plasma Physics ,0103 physical sciences ,Isotopes of xenon ,Nuclear ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,physics.ins-det ,Physics ,Quantum Physics ,Isotope ,010308 nuclear & particles physics ,hep-ex ,Molecular ,Fermion ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,ddc ,Baryon ,Nucleon ,Astronomical and Space Sciences - Abstract
A search for instability of nucleons bound in Xe136 nuclei is reported with 223 kg·yr exposure of Xe136 in the EXO-200 experiment. Lifetime limits of 3.3×1023 and 1.9×1023 yr are established for nucleon decay to Sb133 and Te133, respectively. These are the most stringent to date, exceeding the prior decay limits by a factor of 9 and 7, respectively.
- Published
- 2018
16. Measuring electric fields with nitrogen-vacancy ensembles for neutron electric dipole moment experiments
- Author
-
Sarvagya Sharma, Douglas H Beck, Chris Hovde, and Fahad Alghannam
- Subjects
Physics ,symbols.namesake ,Dipole ,Stark effect ,Neutron electric dipole moment ,Electric field ,Moment (physics) ,symbols ,Neutron ,Line (formation) ,Computational physics ,Standard Model - Abstract
Precise measurements of the dipole moment of the neutron test the standard model of particle physics. Typical experiments detect the evolution of neutrons in magnetic and electric fields. Achieving high sensitivity requires stable and homogeneous fields. We are investigating nitrogen-vacancy diamonds for sensing electric fields. As a first step we have measured electric fields by optically-detected magnetic resonance. Near avoided crossings a first-order Stark effect is observed. Line positions can be measured to about 5 kHz, allowing electric fields to be measured to about 2 kV/cm. Extending the technique to use electromagnetically-induced transparency will allow for an all-optical probe, but may introduce issues of systematic errors in the electric field measurement.
- Published
- 2018
17. Testing dark decays of baryons in neutron stars
- Author
-
Douglas H Beck, Gordon Baym, Jessie Shelton, Peter Geltenbort, Institut Laue-Langevin (ILL), and ILL
- Subjects
n: decay modes ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,Nuclear Theory ,Physics beyond the Standard Model ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,General Physics and Astronomy ,FOS: Physical sciences ,anomaly ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Standard Model ,Nuclear Theory (nucl-th) ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Neutron ,n: lifetime ,010306 general physics ,Nuclear Experiment ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Solar mass ,mass: solar ,010308 nuclear & particles physics ,new physics ,dark matter: mass ,Fermion ,stability ,Baryon ,n: coupling ,Neutron star ,neutron star: mass ,High Energy Physics - Phenomenology ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Elementary Particles and Fields ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We demonstrate that the observation of neutron stars with masses greater than one solar mass places severe demands on any exotic neutron decay mode that could explain the discrepancy between beam and bottle measurements of the neutron lifetime. If the neutron can decay to a stable, feebly-interacting dark fermion, the maximum possible mass of a neutron star is 0.7 solar masses, while all well-measured neutron star masses exceed one solar mass. The survival of $2 M_\odot$ neutron stars therefore indicates that any explanation beyond the Standard Model for the neutron lifetime puzzle requires dark matter to be part of a multi-particle dark sector with highly constrained interactions., 4 pages, 7 figures. v2: relativistic corrections added, results shown for wider range of dark fermion masses, conclusions unchanged
- Published
- 2018
18. An RF-only ion-funnel for extraction from high-pressure gases
- Author
-
David Leonard, Thomas Koffas, W. M. Fairbank, T. Daniels, F. Retière, R. MacLellan, D. Fudenberg, J. Farine, P. S. Barbeau, I. Ostrovskiy, F. Leonard, R. Gornea, Marc Weber, D. Tosi, E. Smith, P. C. Rowson, Douglas H Beck, J. Walton, Y-R Yen, K. Graham, U. Wichoski, David A. Sinclair, J. L. Vuilleumier, M. Heffner, A. Craycraft, Monica Dunford, A. Piepke, M. Hughes, A. Sabourov, T. Tolba, A. Schubert, J. B. Albert, W. Feldmeier, L. J. Kaufman, David Moore, T. Didberidze, M. Tarka, B. Mong, D. J. Auty, C. Licciardi, V.N. Stekhanov, T. Brunner, Yuehe Lin, A. Karelin, Martin Breidenbach, S. J. Daugherty, C. Benitez-Medina, Ryan Killick, R. DeVoe, Lorenzo Fabris, C. Chambers, B. T. Cleveland, K. S. Kumar, A. Pocar, C. Ouellet, A. Kuchenkov, Giorgio Gratta, S. Kravitz, V. Varentsov, Liang Yang, Jens Dilling, M. Coon, T. N. Johnson, M. J. Jewell, A. Odian, K. Twelker, X. S. Jiang, R. Krücken, T. Walton, M. P. Rozo, M. J. Dolinski, Michael G. Marino, S. Johnston, P. Fierlinger, Liangjian Wen, and Guofu Cao
- Subjects
Physics - Instrumentation and Detectors ,Trace Amounts ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,chemistry.chemical_element ,01 natural sciences ,Ion ,Xenon ,Ionization ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,Physical and Theoretical Chemistry ,010306 general physics ,Nuclear Experiment ,Instrumentation ,Spectroscopy ,Time projection chamber ,Chemistry ,010401 analytical chemistry ,Extraction (chemistry) ,Barium ,Instrumentation and Detectors (physics.ins-det) ,Condensed Matter Physics ,0104 chemical sciences ,13. Climate action ,Atomic physics ,Bar (unit) - Abstract
An RF ion-funnel technique has been developed to extract ions from a high-pressure (10 bar) noble-gas environment into a vacuum (10(-6) mbar). Detailed simulations have been performed and a prototype has been developed for the purpose of extracting Ba-136 ions from Xe gas with high efficiency. With this prototype, ions have been extracted for the first time from high-pressure xenon gas and argon gas. Systematic studies have been carried out and compared to simulations. This demonstration of extraction of ions, with mass comparable to that of the gas generating the high-pressure, has applications to Ba tagging from a Xe-gas time-projection chamber for double-beta decay, as well as to the general problem of recovering trace amounts of an ionized element in a heavy (m > 40 u) carrier gas. (C) 2015 Elsevier B.V. All rights reserved.
- Published
- 2015
19. Searches for double beta decay of Xe134 with EXO-200
- Author
-
L. J. Kaufman, Yuehe Lin, J. J. Russell, K. S. Kumar, T. Michel, Douglas H Beck, T. Daniels, Y-R Yen, J. Walton, M. Danilov, M. J. Jewell, I. Ostrovskiy, C. R. Hall, Y. Lan, David Leonard, A. S. Johnson, P. C. Rowson, J. Daughhetee, R. DeVoe, J. B. Albert, Petr Vogel, O. Ya. Zeldovich, A. Schubert, R. MacLellan, W. Cree, Thomas Koffas, W. M. Fairbank, J. Hoessl, O. Njoya, S. Delaquis, A.C. Odian, F. Retiere, P. Hufschmidt, Shu Li, R. Krücken, M. Hughes, Peter Fierlinger, S. Feyzbakhsh, J. Zettlemoyer, A. P. Waite, David A. Sinclair, A. Der Mesrobian-Kabakian, J. L. Vuilleumier, C. Licciardi, M. Tarka, P. S. Barbeau, A. Craycraft, K. Graham, Jens Dilling, I. Badhrees, C. Chambers, E. Smith, Martin Breidenbach, R. Bayerlein, A. Piepke, A. Karelin, Michael G. Marino, S. J. Daugherty, K. Murray, S. Johnston, David Moore, T. Didberidze, R. H. Nelson, B. T. Cleveland, Gisela Anton, T. Walton, A. Kuchenkov, J. Davis, M. Wagenpfeil, Guofu Cao, U. Wichoski, A. Dolgolenko, B. Mong, Giorgio Gratta, T. Ziegler, T. Tolba, L. J. Wen, Marc Weber, D. Fudenberg, M. J. Dolinski, S. Kravitz, Liang Yang, A. Jamil, R. Tsang, W. R. Cen, R. Gornea, M. Coon, A. Pocar, J. Farine, V. Belov, V.N. Stekhanov, and T. Brunner
- Subjects
Physics ,Particle physics ,Isotope ,010308 nuclear & particles physics ,chemistry.chemical_element ,01 natural sciences ,Beta decay ,Particle detector ,3. Good health ,Nuclear physics ,Xenon ,chemistry ,Double beta decay ,0103 physical sciences ,Isotopes of xenon ,Nuclear astrophysics ,010306 general physics ,Radioactive decay - Abstract
Searches for double beta decay of ^(134)Xe were performed with EXO-200, a single-phase liquid xenon detector designed to search for neutrinoless double beta decay of ^(136)Xe. Using an exposure of 29.6 kg⋅yr, the lower limits of T^(2νββ_+(1/2) > 8.7×10^(20) yr and T^(0νββ)_(1/2) > 1.1×10^(23) yr at 90% confidence level were derived, with corresponding half-life sensitivities of 1.2×10^(21) yr and 1.9×10^(23) yr. These limits exceed those in the literature for ^(134)Xe, improving by factors of nearly 105 and 2 for the two antineutrino and neutrinoless modes, respectively.
- Published
- 2017
20. Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double beta decay
- Author
-
J. L. Vuilleumier, B. Mong, M. Wagenpfeil, J. Dalmasson, A. Piepke, J. Todd, Y. Y. Ding, M. Heffner, Yuehe Lin, John L. Orrell, E. Raguzin, X.L. Sun, J. B. Zhao, C. T. Overman, R. Krücken, D. Qiu, Z. Li, Giorgio Gratta, A. Burenkov, M. Hasan, Arun Kumar Soma, L. J. Kaufman, R. DeVoe, S. J. Daugherty, Samuele Sangiorgio, M. Hughes, K. S. Kumar, V. Veeraraghavan, Y. Lan, Wei Wei, Petr Vogel, Rejean Fontaine, J. Daughhetee, A. Craycraft, U. Wichoski, Ethan Brown, F. Bourque, M. J. Jewell, M. Coon, D. Harris, Yu-Guang Zhou, T. Ziegler, T. Tolba, G. St-Hilaire, T. Tsang, Qun-Yao Wang, T. Stiegler, M. Chiu, J. P. Brodsky, David Moore, F. Retiere, Y. Ito, J. Zettlemoyer, Douglas H Beck, M. Oriunno, Zhijun Ning, S. Johnston, O. Zeldovich, G. Visser, A. Karelin, J. Hößl, A. Pocar, R. Tsang, T. Didberidze, S. Kravitz, Guofu Cao, T. N. Johnson, J. Schneider, P. Hufschmidt, E. V. Hansen, Y-R Yen, David A. Sinclair, F. Vachon, Ryan Killick, David Leonard, K. Murray, Liang Yang, R. J. Newby, Thomas Koffas, A. Jamil, D. Fudenberg, W. M. Fairbank, Gisela Anton, M. Côté, P. C. Rowson, T. Daniels, K. Graham, G. S. Ortega, B. T. Cleveland, M. J. Dolinski, V.N. Stekhanov, K. Odgers, Angelo Dragone, A. House, S. Rescia, A. Kuchenkov, W. Cree, Jean-Francois Pratte, Veljko Radeka, T. Rossignol, S. Feyzbakhsh, R. Saldanha, S. Delaquis, T. Brunner, W. R. Cen, Serge A. Charlebois, C. Licciardi, G. S. Li, R. Gornea, K. Skarpaas, G. Wrede, I. J. Arnquist, M. Tarka, Wei Wu, X. S. Jiang, A. Der Mesrobian-Kabakian, C. Chambers, A.C. Odian, G. Giacomini, A. Schubert, S. Parent, J. Farine, V. Belov, A. Robinson, L. Cao, F. Nolet, L. J. Wen, Marc Weber, S. X. Wu, Lorenzo Fabris, J. B. Albert, R. MacLellan, Thilo Michel, P. S. Barbeau, Jens Dilling, Xuan Zhang, I. Badhrees, I. Ostrovskiy, O. Njoya, A. Iverson, Shu Li, S. Schmidt, T. Rao, N. Roy, and E. W. Hoppe
- Subjects
Physics ,Time projection chamber ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Active medium ,Detector ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,7. Clean energy ,3. Good health ,Nuclear physics ,Homogeneous ,0103 physical sciences ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Enriched Xenon Observatory ,Nuclear Experiment ,Order of magnitude - Abstract
The next-generation Enriched Xenon Observatory (nEXO) is a proposed experiment to search for neutrinoless double beta ($0\nu\beta\beta$) decay in $^{136}$Xe with a target half-life sensitivity of approximately $10^{28}$ years using $5\times10^3$ kg of isotopically enriched liquid-xenon in a time projection chamber. This improvement of two orders of magnitude in sensitivity over current limits is obtained by a significant increase of the $^{136}$Xe mass, the monolithic and homogeneous configuration of the active medium, and the multi-parameter measurements of the interactions enabled by the time projection chamber. The detector concept and anticipated performance are presented based upon demonstrated realizable background rates., Comment: v2 as published
- Published
- 2017
21. Electric and magnetic sensing with NV ensembles in diamonds
- Author
-
Douglas H Beck, Chris Hovde, Sarvagya Sharma, and Fahad Alghannam
- Subjects
Electromagnetic field ,Materials science ,Condensed matter physics ,Field (physics) ,Magnetism ,Diamond ,02 engineering and technology ,engineering.material ,021001 nanoscience & nanotechnology ,01 natural sciences ,Magnetic field ,symbols.namesake ,Stark effect ,Electric field ,0103 physical sciences ,engineering ,symbols ,Atomic physics ,010306 general physics ,0210 nano-technology ,Hyperfine structure - Abstract
We report measurements of optically detected magnetic resonance spectra of ensembles of nitrogen-vacancy (NV-) centers in diamonds in the presence of electromagnetic fields. To reduce inhomogeneous broadening, the spectra are acquired from a region of 20 cubic microns in a CVD(Chemical Vapor Deposition) diamond through a confocal microscope. The Stark shift from transverse electric fields is enhanced at avoided crossings between the hyperfine levels that arise from interaction with 14N(I = 1) nuclei in the diamond lattice. As expected from previous reports, the Stark shift of the spectral lines is stronger when there is no magnetic field along the NV axis. The shift is also strong, but for different transitions, at a field of about 100 uT.
- Published
- 2017
22. Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector
- Author
-
M. Wagenpfeil, S. Feyzbakhsh, S. Johnston, Martin Breidenbach, M. Coon, P. Fierlinger, Liangjian Wen, S. J. Daugherty, Guofu Cao, K. Graham, C. Licciardi, S. Kravitz, O. Ya. Zeldovich, R. Bayerlein, A. Piepke, R. H. Nelson, A. Schubert, U. Wichoski, Marc Weber, B. T. Cleveland, E. V. Hansen, B. Mong, P. C. Rowson, Giorgio Gratta, A. Kuchenkov, T. Ziegler, P. S. Barbeau, W. Cree, J. Davis, R. Krücken, S. Delaquis, K. Murray, David Leonard, R. Tsang, M. J. Jewell, A. Karelin, V. A. Belov, Gisela Anton, Liang Yang, A. Jamil, J. J. Russell, J. Farine, J. B. Albert, T. Walton, Thomas Koffas, W. M. Fairbank, M. Danilov, W. R. Cen, R. Gornea, J. Hoessl, Y. Lan, P. Hufschmidt, R. DeVoe, L. J. Kaufman, Douglas H Beck, J. Zettlemoyer, David A. Sinclair, Y-R Yen, J. Daughhetee, Yuehe Lin, C. Chambers, J. L. Vuilleumier, C. R. Hall, R. MacLellan, K. S. Kumar, A. Craycraft, T. Tolba, Thilo Michel, T. Brunner, A. S. Johnson, A. Dolgolenko, V.N. Stekhanov, A. Pocar, D. Fudenberg, M. Hughes, A. P. Waite, David Moore, T. Didberidze, Petr Vogel, F. Retiere, G. S. Li, M. J. Dolinski, A. Der Mesrobian-Kabakian, I. Ostrovskiy, O. Njoya, Shu Li, S. Schmidt, Jens Dilling, I. Badhrees, A. Odian, Gerrit Wrede, M. Tarka, and T. Daniels
- Subjects
Cryostat ,Physics ,Particle physics ,010308 nuclear & particles physics ,Detector ,General Physics and Astronomy ,chemistry.chemical_element ,FOS: Physical sciences ,Radon ,01 natural sciences ,Confidence interval ,High Energy Physics - Experiment ,ddc ,Nuclear physics ,Lead shielding ,High Energy Physics - Experiment (hep-ex) ,Upgrade ,chemistry ,Double beta decay ,0103 physical sciences ,Nuclear astrophysics ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment - Abstract
Results from a search for neutrinoless double-beta decay $0\nu\beta\beta$ of $^{136}$Xe are presented using the first year of data taken with the upgraded EXO-200 detector. Relative to previous searches by EXO-200, the energy resolution of the detector has been improved to $\sigma/E$=1.23%, the electric field in the drift region has been raised by 50%, and a system to suppress radon in the volume between the cryostat and lead shielding has been implemented. In addition, analysis techniques that improve topological discrimination between $0\nu\beta\beta$ and background events have been developed. Incorporating these hardware and analysis improvements, the median 90% confidence level $0\nu\beta\beta$ half-life sensitivity after combining with the full data set acquired before the upgrade has increased 2-fold to $3.7 \times 10^{25}$ yr. No statistically significant evidence for $0\nu\beta\beta$ is observed, leading to a lower limit on the $0\nu\beta\beta$ half-life of $1.8\times10^{25}$ yr at the 90% confidence level., Comment: 6 pages, 4 figures, final version submitted to PRL
- Published
- 2017
- Full Text
- View/download PDF
23. Characterization of an Ionization Readout Tile for nEXO
- Author
-
T. Stiegler, Douglas H Beck, R. Tsang, K. Murray, Gisela Anton, D. Fudenberg, R. Saldanha, Angelo Dragone, J. Todd, Y. Y. Ding, R. Krücken, Jochen M. Schneider, Y-R Yen, Jean-Francois Pratte, P. C. Rowson, K. Skarpaas, S. Kravitz, E. V. Hansen, Liang Yang, S. Feyzbakhsh, A. House, V. Veeraraghavan, R. J. Newby, A. Jamil, Ethan Brown, M. Chiu, W. Cree, A. Burenkov, S. Delaquis, M. Hughes, M. Côté, T. Daniels, Gabriele Giacomini, A. Pocar, Maulik R. Patel, M. Hasan, J. Farine, A. Karelin, R. DeVoe, Jens Dilling, Arun Kumar Soma, Zhijun Ning, T. Tolba, M. J. Jewell, I. Badhrees, David Moore, A. Robinson, T. Didberidze, B. Mong, M. Wagenpfeil, J. Dalmasson, I. J. Arnquist, Xiaoshan Jiang, Yuehe Lin, Veljko Radeka, A. Piepke, Gerrit Wrede, V.N. Stekhanov, J. B. Zhao, S. Parent, U. Wichoski, M. Oriunno, W. R. Cen, C. Chambers, R. Gornea, M. Heffner, A. Odian, D. Qiu, M. Tarka, S. Johnston, T. Ziegler, I. Ostrovskiy, John L. Orrell, E. Raguzin, Z. Li, T. Brunner, S. Rescia, S. X. Wu, Eric W. Hoppe, M. Coon, S. J. Daugherty, A. Schubert, O. Zeldovich, Cory T. Overman, G. Visser, Wei Wu, O. Njoya, A. Iverson, Triveni Rao, Y. Lan, Thomas Tsang, Shu Li, S. Schmidt, J. Daughhetee, Qian Wang, David Leonard, G. S. Ortega, Thomas Koffas, W. M. Fairbank, Samuele Sangiorgio, Giorgio Gratta, J. L. Vuilleumier, B. T. Cleveland, K. Odgers, Serge A. Charlebois, R. MacLellan, Yumei Zhou, Wei Wei, K. S. Kumar, Rejean Fontaine, A. Kuchenkov, P. Hufschmidt, David A. Sinclair, F. Bourque, J. P. Brodsky, G. St-Hilaire, D. Harris, Y. Ito, L. J. Kaufman, M. J. Dolinski, A. Craycraft, Liangjian Wen, Guofu Cao, G. S. Li, Thilo Michel, T. Rossignol, Xiaoyang Sun, C. Licciardi, A. Der Mesrobian-Kabakian, N. Roy, L. Cao, F. Nolet, F. Vachon, Marc Weber, F. Retière, J. B. Albert, X. Zhang, J. Hößl, P. S. Barbeau, V. A. Belov, and Lorenzo Fabris
- Subjects
Physics - Instrumentation and Detectors ,Materials science ,Physics::Instrumentation and Detectors ,chemistry.chemical_element ,FOS: Physical sciences ,STRIPS ,01 natural sciences ,law.invention ,Optics ,Xenon ,law ,Ionization ,0103 physical sciences ,Wafer ,010306 general physics ,Instrumentation ,Mathematical Physics ,Time projection chamber ,010308 nuclear & particles physics ,business.industry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Anode ,chemistry ,visual_art ,visual_art.visual_art_medium ,Tile ,business - Abstract
A new design for the anode of a time projection chamber, consisting of a charge-detecting "tile", is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3~mm wide, on a 10~\si{\cm} $\times$ 10~\si{\cm} fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a $^{207}$Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution $\sigma/E$=5.5\% is observed at 570~\si{keV}, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936~V/\si{cm}., Comment: 18 pages, 13 figures, as published
- Published
- 2017
- Full Text
- View/download PDF
24. Low-Temperature Transport Properties of Very Dilute Classical Solutions of $$^3$$ 3 He in Superfluid $$^4$$ 4 He
- Author
-
Gordon Baym, Christopher J. Pethick, and Douglas H Beck
- Subjects
Physics ,Superfluidity ,Distribution function ,Condensed matter physics ,Phonon ,Scattering ,General Materials Science ,Fokker–Planck equation ,Diffusion (business) ,Condensed Matter Physics ,Fick's laws of diffusion ,Boltzmann equation ,Atomic and Molecular Physics, and Optics - Abstract
We report microscopic calculations of the thermal conductivity, diffusion constant, and thermal diffusion constant for classical solutions of $$^3$$ He in superfluid $$^4$$ He at temperatures $$T \lesssim 0.6$$ K, where phonons are the dominant excitations of the $$^4$$ He. We focus on solutions with $$^3$$ He concentrations $$\lesssim $$ $$10^{-3}$$ , for which the main scattering mechanisms are phonon–phonon scattering via 3-phonon Landau and Beliaev processes, which maintain the phonons in a drifting equilibrium distribution, and the slower process of $$^3$$ He–phonon scattering, which is crucial for determining the $$^3$$ He distribution function in transport. We use the fact that the relative changes in the energy and momentum of a $$^3$$ He atom in a collision with a phonon are small to derive a Fokker–Planck equation for the $$^3$$ He distribution function, which we show has an analytical solution in terms of Sonine polynomials. We also calculate the corrections to the Fokker–Planck results for the transport coefficients.
- Published
- 2014
25. A new cryogenic apparatus to search for the neutron electric dipole moment
- Author
-
R. J. Holt, Seppo Penttila, S. Baessler, David G. Haase, C. R. Gould, M. E. Hayden, Dipangkar Dutta, S. W. T. MacDonald, L. Barrón-Palos, E. Korobkina, R. P. Redwine, Jen-Chieh Peng, Marcus H. Mendenhall, J. Long, Z. Tang, Haiyan Gao, Steven Clayton, Ross Milner, Evgeni Tsentalovich, J. Kelsey, Robert Golub, E. Ihloff, C. Vidal, S. E. Williamson, Matthew Busch, A. T. Holley, George M. Seidel, A. Saftah, M. Behzadipour, B. W. Filippone, M. Makela, Ayman I. Hawari, I. Berkutov, C. Osthelder, C. Daurer, Ricardo Alarcon, W. Yao, A. Reid, M. Broering, C. Swank, P. R. Huffman, S. Slutsky, Musa Ahmed, J. Leggett, Liang Yang, John Ramsey, Yu. Efremenko, H. O. Meyer, M. Blatnik, R. Carr, James Maxwell, T. D. S. Stanislaus, Scott Currie, E. S. Smith, W. M. Snow, A. Lipman, Takeyasu M. Ito, N. S. Phan, A. Aleksandrova, Leah Broussard, C.-Y. Liu, X. Sun, Steve K. Lamoreaux, K. A. Dow, Nima Nouri, D. P. Kendellen, A. Matlashov, R. Dipert, L. M. Bartoszek, K. K. H. Leung, C. O'Shaughnessy, M. Karcz, C. B. Erickson, Yongsun Kim, Wanchun Wei, A. R. Young, S. K. Imam, J. Bessuille, Geoffrey Greene, R. Tavakoli Dinani, T. M. Rao, S. Sosothikul, Douglas H Beck, D. Hasell, Wolfgang Korsch, P. E. Mueller, I.F. Silvera, C. R. White, M. D. Cooper, Christopher Crawford, Nadia Fomin, W. E. Sondheim, Brad Plaster, and V. Cianciolo
- Subjects
Physics ,Physics - Instrumentation and Detectors ,Neutron electric dipole moment ,010308 nuclear & particles physics ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Oak Ridge National Laboratory ,01 natural sciences ,030218 nuclear medicine & medical imaging ,Superfluidity ,Nuclear physics ,03 medical and health sciences ,0302 clinical medicine ,Electric field ,0103 physical sciences ,Limit (music) ,Neutron ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Instrumentation ,Mathematical Physics ,Spallation Neutron Source - Abstract
© 2019 IOP Publishing Ltd and Sissa Medialab. A cryogenic apparatus is described that enables a new experiment, nEDM@SNS, with a major improvement in sensitivity compared to the existing limit in the search for a neutron Electric Dipole Moment (EDM). This apparatus uses superfluid 4He to produce a high density of Ultra-Cold Neutrons (UCN) which are contained in a suitably coated pair of measurement cells. The experiment, to be operated at the Spallation Neutron Source at Oak Ridge National Laboratory, uses polarized 3He from an Atomic Beam Source injected into the superfluid 4He and transported to the measurement cells where it serves as a co-magnetometer. The superfluid 4He is also used as an insulating medium allowing significantly higher electric fields, compared to previous experiments, to be maintained across the measurement cells. These features provide an ultimate statistical uncertainty for the EDM of 2-3× 10-28 e-cm, with anticipated systematic uncertainties below this level.
- Published
- 2019
26. The neutron electric dipole moment experiment at the Spallation Neutron Source
- Author
-
Scott Currie, John Ramsey, Haiyan Gao, Dipangkar Dutta, Jen-Chieh Peng, Y.J. Kim, A. Lipman, A. Matlashov, E. Ihloff, M. Blatnik, E. Korobkina, M. McCrea, P. R. Huffman, C. R. Gould, C. M. O'Shaughnessy, Brad Plaster, D. Hasell, T. Rao, Mark Makela, T. D. S. Stanislaus, Wanchun Wei, C. B. Erickson, S. Baeßler, Nima Nouri, M. E. Hayden, Liang Yang, M. Broering, Ayman I. Hawari, S. Sosothikul, Yu. Efremenko, S. E. Williamson, P. E. Mueller, L. M. Bartoszek, K. K. H. Leung, A. R. Young, L. Barrón-Palos, Seppo Penttila, J. Bessuille, Geoffrey Greene, Steve K. Lamoreaux, K. A. Dow, S. W. T. MacDonald, Leah Broussard, Douglas H Beck, M. Behzadipour, Ricardo Alarcon, W. Yao, S. Slutsky, Christopher Crawford, A. Aleksandrova, R. Tavakoli Dinani, David G. Haase, Evgeni Tsentalovich, R. J. Holt, Z. Tang, R. P. Redwine, J. Kelsey, Matthew Busch, E. Leggett, A. Saftah, Steven Clayton, Ross Milner, M. W. Ahmed, Nadia Fomin, C. Vidal, Wolfgang Korsch, V. Cianciolo, E. Smith, I.F. Silvera, C. R. White, Marcus H. Mendenhall, J. Long, R. Dipert, Robert Golub, A. T. Holley, C. Osthelder, R. Carr, W. M. Snow, George M. Seidel, B. W. Filippone, W. E. Sondheim, Takeyasu M. Ito, N. S. Phan, C. Daurer, M. D. Cooper, A. Reid, C. Swank, James Maxwell, X. Sun, Pinghan Chu, H. O. Meyer, and C.-Y. Liu
- Subjects
Physics ,Physics - Instrumentation and Detectors ,Neutron electric dipole moment ,010308 nuclear & particles physics ,QC1-999 ,FOS: Physical sciences ,Field strength ,Instrumentation and Detectors (physics.ins-det) ,7. Clean energy ,01 natural sciences ,Nuclear physics ,Electric field ,0103 physical sciences ,Electromagnetic shielding ,Precession ,Ultracold neutrons ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Spin (physics) ,Nuclear Experiment ,Spallation Neutron Source - Abstract
Novel experimental techniques are required to make the next big leap in neutron electric dipole moment experimental sensitivity, both in terms of statistics and systematic error control. The nEDM experiment at the Spallation Neutron Source (nEDM@SNS) will implement the scheme of Golub & Lamoreaux [Phys. Rep., 237, 1 (1994)]. The unique properties of combining polarized ultracold neutrons, polarized $^3$He, and superfluid $^4$He will be exploited to provide a sensitivity to $\sim 10^{-28}\,e{\rm \,\cdot\, cm}$. Our cryogenic apparatus will deploy two small ($3\,{\rm L}$) measurement cells with a high density of ultracold neutrons produced and spin analyzed in situ. The electric field strength, precession time, magnetic shielding, and detected UCN number will all be enhanced compared to previous room temperature Ramsey measurements. Our $^3$He co-magnetometer offers unique control of systematic effects, in particular the Bloch-Siegert induced false EDM. Furthermore, there will be two distinct measurement modes: free precession and dressed spin. This will provide an important self-check of our results. Following five years of "critical component demonstration," our collaboration transitioned to a "large scale integration" phase in 2018. An overview of our measurement techniques, experimental design, and brief updates are described in these proceedings., Submitted to proceedings of PPNS 2018 - International Workshop on Particle physics at Neutron Sources (https://www.webofconferences.org/epj-web-of-conferences-forthcoming-conferences/1148-ppns-2018)
- Published
- 2019
27. The PanEDM neutron electric dipole moment experiment at the ILL
- Author
-
Christopher Klau, Joachim Meichelböck, Mark Tucker, Michael Kreuz, Robert Paddock, T. Lins, Skyler Degenkolb, Jaideep Singh, Tim Chupp, Maurits van der Grinten, Martin Rosner, S. N. Ivanov, Peter Fierlinger, Oliver Zimmer, Eddy Lelièvre-Berna, Katharina Fierlinger, David Wurm, S. Stuiber, Hanno Filter, R. Stoepler, Michael Sturm, A. P. Serebrov, Florian Röhrer, B. Taubenheim, Douglas H Beck, Thomas Neulinger, Xavier Tonon, Institut Laue-Langevin (ILL), and ILL
- Subjects
Physics - Instrumentation and Detectors ,Neutron electric dipole moment ,QC1-999 ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Neutron ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,activity report ,spin: precession ,Physics ,n: electric moment ,010308 nuclear & particles physics ,shielding: magnetic ,n: particle source ,Instrumentation and Detectors (physics.ins-det) ,stability ,Magnetic field ,Computational physics ,Electric dipole moment ,experimental equipment ,Electromagnetic coil ,Electromagnetic shielding ,Ultracold neutrons ,upgrade ,Nucleon - Abstract
The neutron's permanent electric dipole moment $d_n$ is constrained to below $3\times10^{-26} e~\text{cm}$ (90% C.L.) [ arXiv:hep-ex/0602020, arXiv:1509.04411 ], by experiments using ultracold neutrons (UCN). We plan to improve this limit by an order of magnitude or more with PanEDM, the first experiment exploiting the ILL's new UCN source SuperSUN. SuperSUN is expected to provide a high density of UCN with energies below 80 neV, implying extended statistical reach with respect to existing sources, for experiments that rely on long storage or spin-precession times. Systematic errors in PanEDM are strongly suppressed by passive magnetic shielding, with magnetic field and gradient drifts at the single fT level. A holding-field homogeneity on the order of $10^{-4}$ is achieved in low residual fields, via a high static damping factor and built-in coil system. No comagnetometer is needed for the first order-of-magnitude improvement in $d_n$, thanks to high magnetic stability and an assortment of sensors outside the UCN storage volumes. PanEDM will be commissioned and upgraded in parallel with SuperSUN, to take full advantage of the source's output in each phase. Commissioning is ongoing in 2019, and a new limit in the mid $10^{-27} e~\text{cm}$ range should be possible with two full reactor cycles of data in the commissioned apparatus., 8 pages, 4 figures; submitted to the Proceedings of the International Workshop on Particle Physics at Neutron Sources PPNS 2018, Grenoble, France, May 24-26, 2018
- Published
- 2019
28. Neutron decay, dark matter and neutron stars
- Author
-
Douglas H Beck
- Subjects
Condensed Matter::Quantum Gases ,Physics ,010308 nuclear & particles physics ,High Energy Physics::Lattice ,QC1-999 ,Nuclear Theory ,Dark matter ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Fermion ,Astrophysics ,01 natural sciences ,Neutron star ,Stars ,0103 physical sciences ,Neutron ,Nuclear Experiment ,010306 general physics - Abstract
Following up on a suggestion that decay to a dark matter fermion might explain the 4σ discrepancy in the neutron lifetime, we consider the implications of such a fermion on neutron star structure. We find that including it reduces the maximum neutron star mass to well below the observed masses. In order to recover stars with the observed masses, the (repulsive) self-interactions of the dark fermion would have to be stronger than those of the nucleon-nucleon interaction.
- Published
- 2019
29. An apparatus for studying electrical breakdown in liquid helium at 0.4 K and testing electrode materials for the neutron electric dipole moment experiment at the Spallation Neutron Source
- Author
-
Scott Currie, B. W. Filippone, Douglas H Beck, R. Schmid, John Ramsey, W. C. Griffith, Steven Clayton, Mark Makela, V. Cianciolo, Christopher Crawford, Takeyasu M. Ito, Wanchun Wei, George M. Seidel, S. E. Williamson, Daniel Wagner, W. Yao, and Zhaowen Tang
- Subjects
Materials science ,010308 nuclear & particles physics ,Vapor pressure ,Liquid helium ,Electrical breakdown ,chemistry.chemical_element ,01 natural sciences ,law.invention ,chemistry ,law ,0103 physical sciences ,Electrode ,Neutron source ,Spallation ,Atomic physics ,010306 general physics ,Instrumentation ,Helium ,Spallation Neutron Source - Abstract
We have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ∼600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1–2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a wide range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of ρV > 5 × 10^(18) Ω cm. This lower bound is 5 times larger than the bound previously measured. We report the design, construction, and operational experience of the apparatus, as well as initial results.
- Published
- 2016
30. Diamond-based field sensor for nEDM experiment
- Author
-
Douglas H Beck, Sarvagya Sharma, and Chris Hovde
- Subjects
Physics ,Total internal reflection ,Field (physics) ,Neutron electric dipole moment ,Magnetism ,business.industry ,Electromagnetically induced transparency ,Physics::Optics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Magnetic field ,symbols.namesake ,Optics ,Stark effect ,Electric field ,0103 physical sciences ,symbols ,010306 general physics ,0210 nano-technology ,business - Abstract
Ensembles of negatively charged nitrogen vacancy centers in diamonds are investigated as optical sensors for electric and magnetic fields in the interaction region of a neutron electric dipole moment experiment. As a first step towards measuring electric fields, the Stark shift is investigated in the ground electronic state, using optically detected magnetic resonance (ODMR) to measure hyperfine-resolved fine structure transitions. One detection approach is to modulate the electric field and demodulate the ODMR signal at the modulation frequency or its harmonic. Models indicate that the ratio of the amplitudes of these signals provides information about the magnitude of the electric field. Experiments show line shapes consistent with the models. Methods are considered for extending this technique to all-optical measurement of fields. Additionally, progress is reported towards an all-optical, fiberized sensor based on electromagnetically-induced transparency (EIT), which may be suitable for measuring magnetic fields. The design uses total internal reflection to provide a long optical path through the diamond for both the 637 nm EIT laser and a green repump laser.
- Published
- 2016
31. Elementary quantum mechanics of the neutron with an electric dipole moment
- Author
-
Gordon Baym and Douglas H Beck
- Subjects
Physics ,Bond dipole moment ,Multidisciplinary ,Neutron magnetic moment ,Nuclear Theory ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Transition dipole moment ,FOS: Physical sciences ,01 natural sciences ,Electron electric dipole moment ,Nuclear Theory (nucl-th) ,Electric dipole moment ,Dipole ,Polarization density ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Quantum mechanics ,Quantum electrodynamics ,0103 physical sciences ,Physical Sciences ,010306 general physics ,Nuclear Experiment ,Magnetic dipole - Abstract
The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, D → D→, is not constrained to lie along the spin operator. Although the expectation value of D → D→ in the neutron is less than 10 − 13 10−13 of the neutron radius, r n rn, the expectation value of D → 2 D→ 2 is of order r n 2 rn2. We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron.
- Published
- 2016
- Full Text
- View/download PDF
32. An Optimal Energy Estimator to Reduce Correlated Noise for the EXO-200 Light Readout
- Author
-
A. Der Mesrobian-Kabakian, Yuehe Lin, A. Pocar, S. Kravitz, Monica Dunford, C. Y. Prescott, M. Coon, R. Tsang, A. Craycraft, J. L. Wood, V.N. Stekhanov, Liang Yang, K. S. Kumar, W. R. Cen, R. Gornea, K. Graham, J. J. Russell, J. Farine, M. Danilov, Peter Fierlinger, A. Karelin, A. Dolgolenko, R. DeVoe, Douglas H Beck, David Leonard, V. Belov, M. Tarka, Thomas Koffas, W. M. Fairbank, Y-R Yen, Michael G. Marino, T. Daniels, S. Johnston, T. Brunner, C. G. Davis, O. Ya. Zeldovich, T. Walton, Liangjian Wen, A. S. Johnson, Guofu Cao, Martin Breidenbach, S. J. Daugherty, L. J. Kaufman, A. Burenkov, B. Mong, E. Smith, R. Krücken, F. Retière, J. B. Albert, David A. Sinclair, A. Schubert, Ryan Killick, R. H. Nelson, M. J. Dolinski, U. Wichoski, B. T. Cleveland, P. S. Barbeau, T. Tolba, A. Kuchenkov, S. Feyzbakhsh, Marc Weber, C. Licciardi, C. R. Hall, J. L. Vuilleumier, J. Walton, A. Piepke, Giorgio Gratta, W. Feldmeier, J. Davis, M. Hughes, A. P. Waite, M. J. Jewell, K. Twelker, David Moore, T. Didberidze, T. N. Johnson, D. Fudenberg, R. MacLellan, C. Chambers, P. C. Rowson, S. Delaquis, Jens Dilling, A. Odian, I. Ostrovskiy, and O. Njoya
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,01 natural sciences ,Noise (electronics) ,Particle detector ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Optics ,Double beta decay ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Instrumentation ,Nuclear Experiment ,Mathematical Physics ,Physics ,Scintillation ,010308 nuclear & particles physics ,business.industry ,Detector ,Estimator ,Instrumentation and Detectors (physics.ins-det) ,High Energy Physics::Experiment ,business ,Energy (signal processing) ,Radioactive decay - Abstract
The energy resolution of the EXO-200 detector is limited by electronics noise in the measurement of the scintillation response. Here we present a new technique to extract optimal scintillation energy measurements for signals split across multiple channels in the presence of correlated noise. The implementation of these techniques improves the energy resolution of the detector at the neutrinoless double beta decay Q-value from $\left[1.9641\pm 0.0039\right]\%$ to $\left[1.5820\pm 0.0044\right]\%$., Comment: 21 pages, 8 figures, 1 table
- Published
- 2016
- Full Text
- View/download PDF
33. Study of silicon photomultiplier performance in external electric fields
- Author
-
A. Alamre, T. Stiegler, John L. Orrell, T. Daniels, M. Côté, J. Schneider, Z. Li, N. Roy, L. Cao, F. Nolet, M. Oriunno, M. Hughes, Ethan Brown, J. Farine, D. Fairbank, D. Qiu, Y. Ito, M. Coon, Thilo Michel, Qing Xia, V.N. Stekhanov, C. T. Overman, M. Chiu, G. S. Ortega, A. Karelin, A. Pocar, D. S. Leonard, T. Tolba, Venkatesh Veeraraghavan, J. Hößl, Marc Weber, S. Kravitz, Yuehe Lin, David Moore, Y. Lan, R. DeVoe, Serge A. Charlebois, K. Murray, A. Craycraft, J. Echevers, Gisela Anton, M. Wagenpfeil, J. Dalmasson, T. Brunner, E. Raguzin, O. Nusair, Jens Dilling, R. Krücken, Z. Ning, Samuele Sangiorgio, Wei Wei, K. S. Kumar, S. X. Wu, Gerard Visser, P. S. Barbeau, D. A. Harris, A. Der Mesrobian-Kabakian, J. B. Zhao, A. Larson, D. Fudenberg, O. Zeldovich, A. Piepke, I. Badhrees, Angelo Dragone, M. J. Jewell, F. Vachon, Rejean Fontaine, Jean-Francois Pratte, R. Saldanha, L. Darroch, D. Kodroff, B. Veenstra, F. Bourque, S. Parent, S. Rescia, Lorenzo Fabris, T. Bhatta, A. Odian, S. J. Daugherty, J. Watkins, I. Ostrovskiy, R. MacLellan, G. Giacomini, J. P. Brodsky, T. I. Totev, Stefan Schmidt, R. Tsang, O. Njoya, A. Iverson, Triveni Rao, K. Skarpaas Viii, T. Rossignol, G. Wrede, B. Mong, Thomas Tsang, Shu Li, P. Fierlinger, W. R. Cen, Liangjian Wen, Guofu Cao, L. J. Kaufman, A. E. Robinson, M. Tarka, J. B. Albert, Qian Wang, G. Li, S. Feyzbakhsh, Giorgio Gratta, Yumei Zhou, M. J. Dolinski, P. Hufschmidt, David A. Sinclair, B. T. Cleveland, K. Odgers, A. Kuchenkov, U. Wichoski, G. St-Hilaire, C. Licciardi, V. Radeka, T. Ziegler, Thomas Koffas, W. M. Fairbank, Xilei Sun, I. J. Arnquist, Wei Wu, R.J. Newby, P. C. Rowson, A. House, W. Cree, S. Delaquis, Xiaoshan Jiang, C. Chambers, G. Gallina, P. Lv, J. Todd, Y. Y. Ding, E. V. Hansen, Liang Yang, A. Jamil, Douglas H Beck, A. Burenkov, Y-R Yen, J. L. Vuilleumier, Arun Kumar Soma, C. Jessiman, M. K. Moe, Eric W. Hoppe, M. Heffner, J. Daughhetee, R. Gornea, F. Retière, and V. A. Belov
- Subjects
010302 applied physics ,Physics - Instrumentation and Detectors ,Materials science ,010308 nuclear & particles physics ,business.industry ,FOS: Physical sciences ,Observable ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,7. Clean energy ,Silicon photomultiplier ,Electric field ,0103 physical sciences ,Optoelectronics ,business ,Instrumentation ,Photon detection ,Mathematical Physics - Abstract
We report on the performance of silicon photomultiplier (SiPM) light sensors operating in electric field strength up to 30 kV/cm and at a temperature of 149K, relative to their performance in the absence of an external electric field. The SiPM devices used in this study show stable gain, photon detection efficiency, and rates of correlated pulses, when exposed to external fields, within the estimated uncertainties. No observable physical damage to the bulk or surface of the devices was caused by the exposure., Comment: 16 pages, 12 figures, 2 tables and two conferences (INPC2016 and TIPP2017)
- Published
- 2018
34. Measurements of the ion fraction and mobility ofα−andβ-decay products in liquid xenon using the EXO-200 detector
- Author
-
A. Craycraft, James G. Davis, I. Ostrovskiy, M. J. Dolinski, A. Karelin, C. G. Davis, Martin Breidenbach, S. J. Daugherty, David A. Sinclair, T. Walton, R. MacLellan, Liang Yang, M. J. Jewell, K. Twelker, B. Mong, A. Schubert, K. Graham, Giorgio Gratta, David Leonard, R. DeVoe, M. Weber, M. G. Marino, V.N. Stekhanov, Douglas H Beck, M. Danilov, P. Fierlinger, Thomas Koffas, W. M. Fairbank, R. Nelson, Y-R Yen, K. O'Sullivan, Guofu Cao, S. Johnston, X. S. Jiang, J. Wood, D. J. Auty, A. Der Mesrobian-Kabakian, Ryan Killick, L. J. Kaufman, R. Tsang, E. Smith, A. Burenkov, M. Coon, B. T. Cleveland, R. Gornea, Yuehe Lin, C. Chambers, A. Kuchenkov, T. Tolba, W. Feldmeier, A. Piepke, P. C. Rowson, L. J. Wen, A. Pocar, J. J. Russell, J.-L. Vuilleumier, K. S. Kumar, S. Delaquis, S. Kravitz, C. Licciardi, O. Ya. Zeldovich, A. Dolgolenko, M. Tarka, J. Farine, V. Belov, A. Robinson, T. Brunner, Justin Albert, Monica Dunford, U. Wichoski, J. D. Wright, T. N. Johnson, A.C. Odian, A. S. Johnson, P. S. Barbeau, C.Y. Prescott, T. Daniels, C. R. Hall, J. Walton, D. Fudenberg, M. Hughes, A. P. Waite, David Moore, and T. Didberidze
- Subjects
Physics ,Semileptonic decay ,Nuclear and High Energy Physics ,Particle physics ,010308 nuclear & particles physics ,Branching fraction ,01 natural sciences ,Charged particle ,Ion ,Ionization ,Double beta decay ,0103 physical sciences ,Alpha decay ,Atomic physics ,010306 general physics ,Crystal Ball - Abstract
Alpha decays in the EXO-200 detector are used to measure the fraction of charged $^{218}\text{Po}$ and $^{214}\text{Bi}$ daughters created from $\ensuremath{\alpha}$ and $\ensuremath{\beta}$ decays, respectively. $^{222}\text{Rn} \ensuremath{\alpha}$ decays in liquid xenon (LXe) are found to produce $^{218}\text{Po}^{+}$ ions $50.3\ifmmode\pm\else\textpm\fi{}3.0%$ of the time, while the remainder of the $^{218}\text{Po}$ atoms are neutral. The fraction of $^{214}\text{Bi}^{+}$ from $^{214}\text{Pb} \ensuremath{\beta}$ decays in LXe is found to be $76.4\ifmmode\pm\else\textpm\fi{}5.7%$, inferred from the relative rates of $^{218}\text{Po}$ and $^{214}\text{Po} \ensuremath{\alpha}$ decays in the LXe. The average velocity of $^{218}\text{Po}$ ions is observed to decrease for longer drift times. Initially the ions have a mobility of $0.390\ifmmode\pm\else\textpm\fi{}0.006\phantom{\rule{4pt}{0ex}}{\text{cm}}^{2}/(\text{kV}\text{s})$, and at long drift times the mobility is $0.219\ifmmode\pm\else\textpm\fi{}0.004\phantom{\rule{4pt}{0ex}}{\text{cm}}^{2}/(\text{kV}\text{s})$. Time constants associated with the change in mobility during drift of the $^{218}\text{Po}^{+}$ ions are found to be proportional to the electron lifetime in the LXe.
- Published
- 2015
35. Transport in ultradilute solutions ofHe3in superfluidHe4
- Author
-
Gordon Baym, Christopher J. Pethick, and Douglas H Beck
- Subjects
Momentum ,Superfluidity ,Physics ,Electric dipole moment ,Diffusion equation ,Heat current ,Condensed matter physics ,Scattering ,Phonon ,Condensed Matter Physics ,Boltzmann equation ,Electronic, Optical and Magnetic Materials - Abstract
We calculate the effect of a heat current on transporting $^{3}\mathrm{He}$ dissolved in superfluid $^{4}\mathrm{He}$ at ultralow concentration, as will be utilized in a proposed experimental search for the electric dipole moment of the neutron (nEDM). In this experiment, a phonon wind will be generated to drive (partly depolarized) $^{3}\mathrm{He}$ down a long pipe. In the regime of $^{3}\mathrm{He}$ concentrations $\ensuremath{\lesssim}{10}^{\ensuremath{-}9}$ and temperatures $\ensuremath{\sim}0.5$ K, the phonons comprising the heat current are kept in a flowing local equilibrium by small angle phonon-phonon scattering, while they transfer momentum to the walls via the $^{4}\mathrm{He}$ first viscosity. On the other hand, the phonon wind drives the $^{3}\mathrm{He}$ out of local equilibrium via phonon-$^{3}\mathrm{He}$ scattering. For temperatures below $0.5$ K, both the phonon and $^{3}\mathrm{He}$ mean free paths can reach the centimeter scale, and we calculate the effects on the transport coefficients. We derive the relevant transport coefficients, the phonon thermal conductivity, and the $^{3}\mathrm{He}$ diffusion constants from the Boltzmann equation. We calculate the effect of scattering from the walls of the pipe and show that it may be characterized by the average distance from points inside the pipe to the walls. The temporal evolution of the spatial distribution of the $^{3}\mathrm{He}$ atoms is determined by the time dependent $^{3}\mathrm{He}$ diffusion equation, which describes the competition between advection by the phonon wind and $^{3}\mathrm{He}$ diffusion. As a consequence of the thermal diffusivity being small compared with the $^{3}\mathrm{He}$ diffusivity, the scale height of the final $^{3}\mathrm{He}$ distribution is much smaller than that of the temperature gradient. We present exact solutions of the time dependent temperature and $^{3}\mathrm{He}$ distributions in terms of a complete set of normal modes.
- Published
- 2015
36. Investigation of radioactivity-induced backgrounds in EXO-200
- Author
-
T. Daniels, C. Y. Prescott, A. S. Johnson, Douglas H Beck, T. N. Johnson, M. J. Jewell, A. Dolgolenko, D. Fudenberg, Y-R Yen, K. Twelker, J. B. Albert, P. C. Rowson, A. Pocar, M. Hughes, A. Piepke, A. P. Waite, I. Ostrovskiy, J. Farine, R. MacLellan, B. Mong, R. Nelson, U. Wichoski, S. Delaquis, V. Belov, S. Herrin, A Rivas, M. Danilov, A. Craycraft, C. R. Hall, David Moore, A. Schubert, T. Didberidze, A.C. Odian, C. G. Davis, Yuehe Lin, C. Benitez-Medina, Giorgio Gratta, J. Wood, Martin Breidenbach, D. J. Auty, T. Tolba, S. J. Daugherty, J. L. Vuilleumier, P. S. Barbeau, T. Walton, G. Giroux, J. Walton, V.N. Stekhanov, T. Brunner, J. J. Russell, R. Gornea, K. S. Kumar, W. Feldmeier, Marc Weber, David A. Sinclair, Ryan Killick, David Leonard, Thomas Koffas, B. T. Cleveland, W. M. Fairbank, Monica Dunford, A. Kuchenkov, C. Chambers, K. Graham, M. Coon, O. Ya. Zeldovich, A. Karelin, J. Davis, M. Tarka, C. Licciardi, L. J. Kaufman, R. DeVoe, X. S. Jiang, A. Der Mesrobian-Kabakian, E. Smith, S. Kravitz, Liang Yang, M. J. Dolinski, Michael G. Marino, S. Johnston, P. Fierlinger, Liangjian Wen, Guofu Cao, A. Burenkov, and R. Tsang
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Parameter space ,01 natural sciences ,Beta decay ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Double beta decay ,0103 physical sciences ,Beta (velocity) ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment - Abstract
The search for neutrinoless double-beta decay (0{\nu}{\beta}{\beta}) requires extremely low background and a good understanding of their sources and their influence on the rate in the region of parameter space relevant to the 0{\nu}{\beta}{\beta} signal. We report on studies of various {\beta}- and {\gamma}-backgrounds in the liquid- xenon-based EXO-200 0{\nu}{\beta}{\beta} experiment. With this work we try to better understand the location and strength of specific background sources and compare the conclusions to radioassay results taken before and during detector construction. Finally, we discuss the implications of these studies for EXO-200 as well as for the next-generation, tonne-scale nEXO detector., Comment: 9 pages, 7 figures, 3 tables
- Published
- 2015
37. Spectroscopy of Ba andBa+deposits in solid xenon for barium tagging in nEXO
- Author
-
Michael G. Marino, S. Johnston, T. Tolba, Guofu Cao, I. Ostrovskiy, C. Benitez-Medina, M. J. Dolinski, P. C. Rowson, S. Kravitz, D. Fudenberg, Yuehe Lin, K. Graham, K. Twelker, David Leonard, Jens Dilling, L. J. Wen, Marc Weber, M. Hughes, Thomas Koffas, W. M. Fairbank, T. Brunner, K. Hall, J. L. Vuilleumier, Martin Breidenbach, T. Daniels, David Moore, Liang Yang, T. Didberidze, S. J. Daugherty, D. J. Auty, S. Cook, J. Walton, W. Feldmeier, K. S. Kumar, M. P. Rozo, J. Farine, Lorenzo Fabris, R. Gornea, B. Mong, R. Krücken, U. Wichoski, G. Giroux, David A. Sinclair, R. MacLellan, Ryan Killick, C. Chambers, T. N. Johnson, B. T. Cleveland, Douglas H Beck, A. Kuchenkov, L. J. Kaufman, Y-R Yen, A. Schubert, Giorgio Gratta, A.C. Odian, A. Piepke, E. Smith, Monica Dunford, F. Retière, Peter Fierlinger, A. Pocar, C. Licciardi, V. Basque, P. S. Barbeau, M. Tarka, M. Heffner, M. Coon, V.N. Stekhanov, X. S. Jiang, R. DeVoe, Y. B. Zhao, T. Walton, A. Craycraft, A. Karelin, and J. B. Albert
- Subjects
Physics ,Physics - Instrumentation and Detectors ,Atomic Physics (physics.atom-ph) ,Analytical chemistry ,FOS: Physical sciences ,chemistry.chemical_element ,Barium ,Instrumentation and Detectors (physics.ins-det) ,Type (model theory) ,Atomic and Molecular Physics, and Optics ,Physics - Atomic Physics ,High Energy Physics - Experiment ,Ion ,High Energy Physics - Experiment (hep-ex) ,Xenon ,chemistry ,Atom ,Physics::Atomic Physics ,Emission spectrum ,Nuclear Experiment (nucl-ex) ,Absorption (chemistry) ,Atomic physics ,Spectroscopy ,Nuclear Experiment - Abstract
Progress on a method of barium tagging for the nEXO double beta decay experiment is reported. Absorption and emission spectra for deposits of barium atoms and ions in solid xenon matrices are presented. Excitation spectra for prominent emission lines, temperature dependence, and bleaching of the fluorescence reveal the existence of different matrix sites. A regular series of sharp lines observed in ${\mathrm{Ba}}^{+}$ deposits is identified with some type of barium hydride molecule. Lower limits for the fluorescence quantum efficiency of the principal Ba emission transition are reported. Under current conditions, an image of fewer than or equal to ${10}^{4}$ Ba atoms can be obtained. Prospects for imaging single Ba atoms in solid xenon are discussed.
- Published
- 2015
38. The G0 Spectrometer Superconducting Magnet System: From a Challenging Construction to Reliable Operations
- Author
-
Timothy A. Antaya, S. E. Williamson, M. Trepanitis, T. A. Brandsberg, K. Nakahara, D. T. Spayde, Douglas H Beck, and P. Brindza
- Subjects
Cryostat ,Materials science ,Fabrication ,Toroid ,Spectrometer ,business.industry ,Superconducting magnet ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Nuclear physics ,Optics ,Magnet ,Perpendicular ,Physics::Accelerator Physics ,Electrical and Electronic Engineering ,business ,Electrical conductor - Abstract
We report on the design, fabrication, commissioning and operation of a large superconducting magnet system that is an important element of the 8 sector super conducting toroidal G0 Spectrometer located at Jefferson Lab (JLAB) in Newport News, VA. The purpose of the G0 experiment is the high precision measurement of polarized electron scattering by protons to isolate the strange quark content of normal baryonic matter by observing parity violation caused by the weak interaction. The G0 spectrometer has been operating for three years and first results are submitted for publication . The G0 SC torus is 4 meters long and 4 meters outside diameter and produces 3 Tesla in the 8 gaps that are accessible to particles. The realization of this 8 sector superconducting toroidal magnet required the development of a number of challenging large scale features including: large total open solid angle, high sector-sector field symmetry, the symmetry axis aligned perpendicular to gravity, the location of the liquid hydrogen (proton) target on axis in the magnet cryostat, and large surface area but thin titanium exit windows on one end of the cryostat. The cryostat consists of a super-alloy welded low permeability stainless steel shell (to minimize magnetization effects) and aluminum end caps. The 8 superconducting coils have unique characteristics including dry pancake wound copper stabilized NbTi conductors, encased in aluminum structure, mechanically preloaded and indirectly cooled by a set of parallel thermo siphon circuits. This magnet was built by BWXT under a fixed price performance contract that included fabrication to a defined ideal cold current spatial distribution. The commissioning and operations will be discussed
- Published
- 2006
39. Beam optics for electron scattering parity-violation experiments
- Author
-
Mark Pitt and Douglas H Beck
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Hadron ,Detector ,Physics::Accelerator Physics ,Nuclear fusion ,High Energy Physics::Experiment ,Parity (physics) ,Beam optics ,Mott scattering ,Electron scattering ,Transport system - Abstract
Parity-violating electron scattering experiments at intermediate energies measure asymmetries in the 10−6 – 10−5 range and therefore require stringent control of false asymmetries. One of the primary sources of such asymmetries is the combined effect of helicity-correlated changes in a certain beam property, accompanied by a change in the detector response. Careful control of the beam, including the optical properties of the acceleration and transport system, is required in order to reduce these false asymmetries to a manageable level. Developments in beam optics associated with the HAPPEX and G0 experiments at Jefferson Lab are presented.
- Published
- 2005
40. The weak neutral current of the nucleon
- Author
-
Douglas H Beck
- Subjects
Quark ,Physics ,Nuclear and High Energy Physics ,Particle physics ,Photon ,Neutral current ,Nuclear Theory ,Electroweak interaction ,Hadron ,Parity (physics) ,Nuclear physics ,Nuclear Experiment ,Nucleon ,Pseudovector - Abstract
Experiment and theory related to the neutral weak current of the nucleon is briefly reviewed. Completed measurements include those of the SAMPLE (MIT-Bates), HAPPEX (JLab) and PVA4 (Mainz) experiments. The future plans for the latter two experiments and those for the G0 experiment (JLab) are also discussed. The review includes discussion of the physics associated with the contributions of different quark flavors to the nucleon vector currents, as well as that associated with the axial vector currents. PACS: 13.60.-r Photon and charged-lepton interactions with hadrons – 14.20.Dh Protons and neutrons – 25.30.-c Elastic electron scattering – 11.30.Er Charge conjugation, parity, time reversal, and other discrete symmetries – 12.15.Lk Electroweak radiative corrections
- Published
- 2005
41. The neutral weak current of the nucleon
- Author
-
Douglas H Beck
- Subjects
Nuclear physics ,Physics ,Nuclear and High Energy Physics ,Quantum electrodynamics ,Structure (category theory) ,Weak current ,Nucleon ,Electron scattering - Abstract
A brief review of the structure of the nucleon as determined through parity-violating electron scattering is presented. The relationship between the electromagnetic and neutral weak currents is developed in a pedagogical introduction. Recent results and present measurements are discussed.
- Published
- 2003
42. Search for Majoron-emitting modes of double-beta decay ofXe136with EXO-200
- Author
-
J. L. Vuilleumier, David A. Sinclair, W. Feldmeier, R. Gornea, M. Danilov, L. J. Kaufman, I. Ostrovskiy, J. Farine, D. J. Auty, Peter Fierlinger, X. S. Jiang, D. Tosi, V. Belov, V.N. Stekhanov, T. N. Johnson, C. G. Davis, Martin Breidenbach, R. Nelson, M. Tarka, Michael G. Marino, Douglas H Beck, S. Johnston, S. J. Daugherty, A.C. Odian, Y-R Yen, B. Mong, J. Davis, Liangjian Wen, Guofu Cao, Giorgio Gratta, T. Daniels, C. Benitez-Medina, M. Coon, C. Chambers, Ryan Killick, Monica Dunford, A. Dolgolenko, David Leonard, B. T. Cleveland, M. J. Jewell, Thomas Koffas, W. M. Fairbank, P. C. Rowson, A. Kuchenkov, K. Twelker, E. Beauchamp, G. Giroux, Yuehe Lin, R. DeVoe, R. Tsang, T. Walton, Petr Vogel, J. J. Russell, J. Chaves, S. Delaquis, A Rivas, K. S. Kumar, Marc Weber, A. Karelin, A. Schubert, U. Wichoski, C. Y. Prescott, S. Herrin, C. R. Hall, R. MacLellan, A. S. Johnson, J. B. Albert, F. Leonard, A. Burenkov, T. Brunner, E. Smith, O. Ya. Zeldovich, S. Kravitz, M. P. Rozo, A. Piepke, K. Graham, Liang Yang, A. Pocar, C. Ouellet, M. J. Dolinski, A. Craycraft, C. Licciardi, P. S. Barbeau, J. Walton, D. Fudenberg, M. Hughes, A. P. Waite, David Moore, T. Didberidze, and T. Tolba
- Subjects
Coupling constant ,Physics ,Nuclear and High Energy Physics ,Spectral index ,010308 nuclear & particles physics ,chemistry.chemical_element ,01 natural sciences ,Beta decay ,Lower limit ,Xenon ,chemistry ,Double beta decay ,0103 physical sciences ,Single phase ,Atomic physics ,010306 general physics ,Majoron - Abstract
EXO-200 is a single phase liquid xenon detector designed to search for neutrinoless double-beta decay of ^(136)Xe. Here, we report on a search for various Majoron-emitting modes based on 100 kg yr exposure of ^(136)Xe. A lower limit of T^(136)Xe_(1/2) > 1.2 × 10^(24) yr at 90% C.L. on the half-life of the spectral index=1 Majoron decay was obtained, corresponding to a constraint on the Majoron-neutrino coupling constant of |⟨g^(M)_(ee)⟩| < (0.8–1.7) × 10^(−5).
- Published
- 2014
43. A magnetically shielded room with ultra low residual field and gradient
- Author
-
S. Chesnevskaya, Jaideep Singh, S. Degenkolb, Jens-Uwe Voigt, T. Lins, Isaac Fan, F. Kuchler, S.D. Sharma, Tim Chupp, Douglas H Beck, T. Zechlau, T. Lauer, U. Schläpfer, B. Niessen, I. Altarev, R. Stoepler, B. Taubenheim, G. Petzoldt, Allard Schnabel, J. McAndrew, Erwin Gutsmiedl, A. Frei, P. Link, S. Knappe-Grüneberg, S. Stuiber, Stephan Paul, Michael Sturm, Martin Burghoff, Lutz Trahms, Michael G. Marino, P. Fierlinger, and Earl Babcock
- Subjects
Materials science ,Physics - Instrumentation and Detectors ,Field (physics) ,010308 nuclear & particles physics ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Residual ,01 natural sciences ,law.invention ,Computational physics ,Magnetic shield ,Dipole ,Volume (thermodynamics) ,13. Climate action ,law ,0103 physical sciences ,Shielded cable ,Fundamental physics ,ddc:530 ,Detectors and Experimental Techniques ,010306 general physics ,Instrumentation - Abstract
A versatile and portable magnetically shielded room with a field of (700 \pm 200) pT within a central volume of 1m x 1m x 1m and a field gradient less than 300 pT/m is described. This performance represents more than a hundred-fold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements. A versatile and portable magnetically shielded room with a field of (700 \pm 200) pT within a central volume of 1m x 1m x 1m and a field gradient less than 300 pT/m is described. This performance represents more than a hundred-fold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus.
- Published
- 2014
- Full Text
- View/download PDF
44. P<scp>ARITY</scp>-V<scp>IOLATING</scp> E<scp>LECTRON</scp> S<scp>CATTERING AND</scp> N<scp>UCLEON</scp> S<scp>TRUCTURE</scp>
- Author
-
Douglas H Beck and R. D. McKeown
- Subjects
Quark ,Physics ,Nuclear and High Energy Physics ,Particle physics ,Series (mathematics) ,010308 nuclear & particles physics ,Scattering ,Formalism (philosophy) ,Nuclear Theory ,FOS: Physical sciences ,Parity (physics) ,01 natural sciences ,Helicity ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,010306 general physics ,Nucleon ,Electron scattering - Abstract
The measurement of parity violation in the helicity dependence of electron-nucleon scattering provides unique information about the basic quark structure of the nucleons. In this review, the general formalism of parity-violating electron scattering is presented, with emphasis on elastic electron-nucleon scattering. The physics issues addressed by such experiments is discussed, and the major goals of the presently envisioned experimental program are identified. %General aspects of the experimental technique are reviewed and A summary of results from a recent series of experiments is presented and the future prospects of this program are also discussed., 45 pages, 9 figures
- Published
- 2001
45. NUCLEON STRUCTURE AND PARITY-VIOLATING ELECTRON SCATTERING
- Author
-
Barry R. Holstein and Douglas H Beck
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Strange quark ,Nuclear Theory ,Scattering ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,General Physics and Astronomy ,Elastic electron ,Parity (physics) ,Nuclear Theory (nucl-th) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics::Experiment ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Nucleon ,Electron scattering - Abstract
We review the area of strange quark contributions to nucleon structure. In particular, we focus on current models of strange quark vector currents in the nucleon and the associated parity-violating elastic electron scattering experiments from which vector- and axial-vector currents are extracted, 40 pages including 7 figures; review article to be published in Int. J. Mod. Phys. E
- Published
- 2001
46. Evidence for Valencelike Quark-Hadron Duality
- Author
-
W. F. Vulcan, C. Yan, I. Niculescu, S. A. Wood, J. H. Mitchell, Paul Gueye, John Arrington, D. J. Mack, P. Stoler, J. W. Price, H. E. Jackson, Donal Day, C. E. Keppel, B. Terburg, J. Reinhold, V. Frolov, D. G. Meekins, L. G. Tang, Rolf Ent, D. Koltenuk, C. S. Armstrong, J. Cha, Dipangkar Dutta, C. Bochna, R. E. Segel, R. D. Carlini, D. van Westrum, D. Potterveld, R. Mohring, G. Niculescu, C. Cothran, W. Hinton, R. J. Holt, D. F. Geesaman, Ketevi Assamagan, O. K. Baker, M. A. Miller, J. A. Dunne, Douglas H Beck, B. Zeidman, and Haiyan Gao
- Subjects
Quantum chromodynamics ,Quark ,Physics ,Particle physics ,Scattering ,Nuclear Theory ,Hadron ,General Physics and Astronomy ,Elementary particle ,Resonance (particle physics) ,Nuclear physics ,Nuclear Experiment ,Nucleon ,Scaling - Abstract
A newly obtained data sample of inclusive electron-nucleon scattering from both hydrogen and deuterium targets is analyzed. These JLab data span the nucleon resonance region up to four-momentum transfers of 5 (GeV/c){sup 2} . The data are found to follow an average scaling curve. The inclusion of low-momentum transfer data yields a scaling curve resembling deep inelastic neutrino-nucleus scattering data, suggesting a sensitivity to valencelike structure only. (c) 2000 The American Physical Society.
- Published
- 2000
47. An energy feedback system for the MIT/Bates linear accelerator
- Author
-
D. Barkhuff, G. W. Dodson, C. Tschalaer, B. Mueller, E. J. Beise, D. T. Spayde, S. Kowalski, S. P. Wells, A. Zolfaghari, T. Averett, Douglas H Beck, R. D. McKeown, D. Cheever, and Michael Pitt
- Subjects
Physics ,Nuclear and High Energy Physics ,business.industry ,Electrical engineering ,FOS: Physical sciences ,BATES ,Line (electrical engineering) ,Linear particle accelerator ,Energy feedback ,Nuclear Experiment (nucl-ex) ,business ,Nuclear Experiment ,Instrumentation ,Energy (signal processing) ,Order of magnitude ,Voltage - Abstract
We report the development and implementation of an energy feedback system for the MIT/Bates Linear Accelerator Center. General requirements of the system are described, as are the specific requirements, features, and components of the system unique to its implementation at the Bates Laboratory. We demonstrate that with the system in operation, energy fluctuations correlated with the 60 Hz line voltage and with drifts of thermal origin are reduced by an order of magnitude.
- Published
- 2000
48. Measurements of Deuteron Photodisintegration up to 4.0 GeV
- Author
-
D. Beatty, Pete Markowitz, L. Cardman, J. A. Dunne, D. van Westrum, J. Cha, David Mack, H. T. Fortune, K. Gustafsson, R. D. Carlini, C. Bochna, G. J. Kumbartzki, B. R. Owen, J.-O. Hansen, S. Danagoulian, Gabriel Niculescu, Dipangkar Dutta, B. Zeidman, S. Barrow, G. Collins, A. Ahmidouch, Thomas O'Neill, J. W. Price, John Arrington, G. Savage, I. Niculescu, C. Yan, R. J. Holt, H. Mkrtchyan, P. M. Rutt, P. Stoler, Haiyan Gao, D. H. Potterveld, H. E. Jackson, B. W. Filippone, O. K. Baker, Z. E. Meziani, H. Breuer, M. Khandaker, J. Napolitano, B. Terburg, C. S. Armstrong, M. A. Miller, D. Koltenuk, F. Duncan, R. Suleiman, E. J. Brash, K. McFarlane, Rolf Ent, N. Simicevic, D. Abbott, Paul Gueye, R. Madey, W. F. Vulcan, D. F. Geesaman, V. Frolov, T. A. Forest, S. F. Pate, J. E. Belz, M. Harvey, P. E. Bosted, Avraham Klein, T. Eden, J. H. Mitchell, W. J. Cummings, G. Rakness, A. F. Lung, C. Salgado, N. S. Chant, W. Hinton, M. Witkowski, Ronald Gilman, S. Beedoe, R. E. Segel, R. Mohring, S. A. Wood, C. E. Keppel, S. E. Williamson, Alan M. Nathan, E. R. Kinney, Douglas H Beck, R. D. McKeown, J. Reinhold, L. G. Tang, R. V. Cadman, Ketevi Assamagan, Ronald Ransome, D. G. Meekins, E. J. Beise, and C. Cothran
- Subjects
Physics ,Quantum chromodynamics ,Nuclear reaction ,Particle physics ,Proton ,Hadron ,FOS: Physical sciences ,General Physics and Astronomy ,Particle accelerator ,Photon energy ,law.invention ,Nuclear physics ,law ,Photodisintegration ,Physics::Accelerator Physics ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Nucleon - Abstract
The first measurements of the differential cross section for the d(gamma,p)n reaction up to 4.0 GeV were performed at Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. We report the cross sections at the proton center-of-mass angles of 36, 52, 69 and 89 degrees. These results are in reasonable agreement with previous measurements at lower energy. The 89 and 69 degree data show constituent-counting-rule behavior up to 4.0 GeV photon energy. The 36 and 52 degree data disagree with the counting rule behavior. The quantum chromodynamics (QCD) model of nuclear reactions involving reduced amplitudes disagrees with the present data., Comment: 5 pages (REVTeX), 1 figure (postscript)
- Published
- 1998
49. Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data
- Author
-
R. L. Ward, N. Letendre, A. Langley, S. Penn, P. J. Sutton, F. Paoletti, J. H. Romie, G. Kuehn, L. Cunningham, F. J. Raab, R. Cavalieri, P. Ruggi, Laura Cadonati, Benjamin Aylott, G. Kang, M. Jacobson, R. Gustafson, Michael L. Gorodetsky, T. Westphal, J. Franc, S. Giampanis, M. Di Paolo Emilio, E. Tournefier, A. Basti, S. E. Strigin, J.-P. Coulon, Jens Birch, Z. Frei, N. D. Smith-Lefebvre, V. Dattilo, Stefan Hild, H. Müller-Ebhardt, A. Brillet, K. Kaufman, Susan M. Scott, Teviet Creighton, M. Born, K. Mailand, Hyun-Chul Kim, R. Mittleman, Nelson Christensen, C. T. Y. Chung, Michael E Zucker, J. Zweizig, David H. Shoemaker, Holger J. Pletsch, D. Verkindt, M. V. Plissi, C. Griffo, Richard O'Shaughnessy, B. Barr, Malik Rakhmanov, J. Worden, L. Williams, D. Ugolini, J.-D. Fournier, Sebastian Steinlechner, Chad Hanna, C. Wilkinson, M. Lormand, Kipp Cannon, R. S. Ottens, M. T. Hartman, V. Kringel, I. Di Palma, B. Behnke, V. Necula, R. Paoletti, I. Santiago-Prieto, Hartmut Grote, R. Passaquieti, M. Branchesi, G. Losurdo, J. C. Batch, K. A. Hodge, Jong H. Chow, A. Pasqualetti, J. Macarthur, M. Tse, D. M. Macleod, Riccardo Sturani, K. Venkateswara, E. Forsi, S. Braccini, V. Litvine, T. Bhadbade, G. Cagnoli, S. Chung, M. E. Normandin, Zoltán Keresztes, E. Jesse, R. Riesen, V. V. Frolov, Neil J. Cornish, P. E. Lindquist, G. A. Prodi, Alexander Wanner, Rahul Biswas, I. Fiori, Mirko Prato, F. Robinet, C. J. Bell, Robert Stone, A. Di Virgilio, D. Amariutei, F. Nocera, D. J. White, C. Zhao, Alicia M. Sintes, C. Poux, D. Fazi, F. Piergiovanni, S. H. Huttner, D. Atkinson, L. Palladino, N. Zotov, K. Mason, Sanjeev Dhurandhar, Andrew Melatos, Elena Cesarini, M. Pihlaja, Tomasz Bulik, P. G. Murray, M. Lorenzini, A. Masserot, J. H. Hough, B. Bouhou, Douglas R. Cook, Michele Zanolin, V. Kalogera, B. L. Swinkels, C. Graef, Timothy A Welborn, E. Amador Ceron, Xin Chen, R. M. Martin, M. Prijatelj, Xavier Siemens, Roy Williams, D. H. Reitze, L. Taffarello, G. Gelencser, M. Davier, A. Conte, A. Viceré, Yi Chen, Ilya Belopolski, A. Di Lieto, M. Vasúth, S. Márka, A. Mytidis, N. Beveridge, M. Blom, T. Regimbau, C. I. Torrie, S. P. Tarabrin, J. C. Barayoga, Richard J. Abbott, D. R. Ingram, Phil Willems, Stanislav Babak, Kenneth A. Strain, Jordan Camp, D. Feldbaum, T. Meier, P. Puppo, S. Sankar, Marco Aurelio Diaz, C. Bogan, François Bondu, V. Malvezzi, Fabio Marchesoni, P. Hello, Charlotte Bond, G. D. Hammond, B. J. J. Slagmolen, Hee-Suk Cho, Chiara M. F. Mingarelli, A. M. Cruise, R. L. Savage, A. S. Bell, S. Vitale, Grant David Meadors, T. Isogai, Tenglin Li, Stefan Goßler, I. Kowalska, Atsushi J. Nishizawa, H. J. Bulten, Seiji Kawamura, Reinhard Prix, Elizabeth Harstad, A. F. Brooks, Y. Wan, Duncan A. Brown, N. A. Robertson, C. N. Colacino, W. Chen, D. Hammer, Kyungmin Kim, Y. J. Jang, F. Travasso, Michał Bejger, B. O'Reilly, F. Y. Khalili, G. Mazzolo, V. Lhuillier, Walter Winkler, A. S. Markosyan, T. T. Fricke, Harald Lück, Paul Fulda, M. Britzger, Ilya Mandel, E. Macdonald, I. Maksimovic, J. Marque, B. K. Kim, Richard A. Matzner, Eric Thrane, G. McIntyre, Leo Singer, Riccardo Bassiri, E. Maros, A. E. Villar, Roberto Conte, Nergis Mavalvala, J. Aasi, Masa-Katsu Fujimoto, M. Shaltev, D. S. Rabeling, Vuk Mandic, Eric Oelker, Yi Pan, Peter Aufmuth, A. Singer, M. A. Barton, Carl L. Rodriguez, Sascha Husa, Eric W. James, F. Garufi, L. Rolland, Fabrizio Barone, M. Mohan, D. Rosińska, Jerome Degallaix, Rana X. Adhikari, Jordi Burguet-Castell, J. P. Zendri, A. Allocca, H. Yamamoto, C. Michel, C. Aulbert, Sarah Caudill, D. Simakov, Scott Koranda, R. Quitzow-James, R. Day, L. Matone, Gregory M. Harry, R. G. Oldenberg, Sunil Susmithan, N. Man, J. Heefner, Rocco Romano, A. Effler, T. Accadia, K. Haughian, B. Daudert, John A. Clark, Ben Farr, J. N. Marx, László Á. Gergely, V. Re, Ho-Gyu Lee, Kevin M. Ryan, Piotr Jaranowski, Matthew Evans, A. Gennai, Badri Krishnan, M. Holtrop, Katrin Dahl, H. Kaufer, Meng Wang, A. R. Wade, D.B. DeBra, C. M. Mow-Lowry, Sergey P. Vyatchanin, E. Goetz, T. Dent, Mallory S. E. Roberts, Kazuhiro Hayama, J. Logue, John D. Scott, D. L. Kinzel, A. Giazotto, V. Predoi, I. W. Martin, Peter Kalmus, Virginio Sannibale, J. R. Leong, B. Machenschalk, R. A. Mercer, David E. McClelland, F. Donovan, R. Inta, J. H. Clayton, B. F. Whiting, S. Dorsher, C. Bradaschia, P. Shawhan, I. Ferrante, D. Passuello, F. Cleva, Ik Siong Heng, A. Rüdiger, S. Steplewski, Hyun Lee, M. Galimberti, A. Perreca, G. Gemme, M. Drago, Guenakh Mitselmakher, V. Raymond, Fan Zhang, C. Van Den Broeck, Jonathan R. Gair, M. Pichot, S. Klimenko, M. Was, Th. S. Bauer, Christian D. Ott, C. Palomba, S. Privitera, I. Yakushin, L. Sammut, Fabio Postiglione, P. Charlton, P. Kwee, Ruxandra Bondarescu, S. E. Whitcomb, S. C. McGuire, K. A. Thorne, G. Mendell, J. A. Giaime, N. A. Lockerbie, Y. M. Kim, Emma L. Robinson, O. Puncken, John Nelson, D. Talukder, C. V. Torres, I. Leonor, C. Messenger, A. M. Sergeev, F. Seifert, D. Friedrich, C. Lawrie, H. Vocca, P. Astone, R. J. S. Greenhalgh, S. Ast, I. W. Harry, R. Gouaty, C. M. Reed, F. Marion, N. Leroy, V. Kondrashov, M. Kasprzack, Peter Fritschel, Ping Koy Lam, G. Debreczeni, I. A. Bilenko, David J. Ottaway, Vladimir Dergachev, James Whelan, P. Ajith, A. P. M. ter Braack, M. Bastarrika, M. J. Cowart, Y. Minenkov, Y. Bao, P. J. Veitch, John Miller, S. Foley, Shaun Hooper, D. F. Menéndez, T. Prestegard, Saranya Ghosh, R. De Rosa, V. Loriette, R. Schilling, M. Bebronne, Jonah Kanner, A. Morgia, Alessandra Corsi, M. Cordier, D. B. Kelley, Zhihui Du, H. Wittel, M. S. Meyer, W. Z. Korth, Xiaomin Wang, P. Wessels, A. L. Stuver, Ludovico Carbone, P. Couvares, Benno Willke, R. Kurdyumov, R. Kasturi, Matthew P. Edgar, Namjun Kim, Enrico Calloni, E. J. Daw, G. Traylor, J. C. Driggers, Thomas Corbitt, L. Naticchioni, Kazuhiro Agatsuma, F. Frasconi, A. S. Stroeer, Carlos Cepeda, Jessica McIver, Robert J. McCarthy, J. C. Dumas, Rosa Poggiani, V. Herrera, Albert Lazzarini, Anton B. Ivanov, Samuel J. Waldman, M. Tonelli, Larry R. Price, Takao Mori, C. Osthelder, D. O. Bridges, Rebecca Fisher, Jesper Munch, J. Li, David Jones, Marco Cavaglia, P. Raffai, M. A. Bizouard, J. Hanks, S. Van Der Putten, Ranjan Gupta, M. Heurs, Huan Yang, Koji Arai, C. R. Ramet, R. Flaminio, K. Kokeyama, Rainer Weiss, S. D'Antonio, M. A. Frei, E. Saracco, C. Tomlinson, C. A. Costa, Soma Mukherjee, Fausto Acernese, F. Ricci, J. Breyer, Alessandra Buonanno, Paolo Addesso, K. D. Giardina, C. Gill, S. Doravari, Igor Neri, Linqing Wen, A. W. Heptonstall, Peter R. Saulson, Prayush Kumar, G. P. Newton, M. Fyffe, R. W. P. Drever, Drew Keppel, C. Gray, P. Baker, B. Moe, M. Damjanic, E. Coccia, M. Rodruck, J. G. Rollins, C. L. Mueller, Yueh-Feng Liu, S. Grunewald, M. Mantovani, B. Sorazu, A. Thüring, A. C. Melissinos, Andrea Chincarini, T. Z. Summerscales, W. Katzman, R. J.E. Smith, Gabriela Gonzalez, Ettore Majorana, D. Keitel, L. G. Prokhorov, J. M. Hallam, Innocenzo M. Pinto, Kentaro Somiya, M. Brinkmann, Matthew West, W. W. Johnson, Amanda J. Page, D. Lodhia, P. Ehrens, C-H. Lee, S. B. Anderson, Joseph Gleason, V. Fafone, G. R. Skelton, Andrew Lundgren, G. Santostasi, Ruslan Vaulin, David B. Tanner, M. Bitossi, Maik Frede, B. Mours, M. C. Araya, S. Kandhasamy, A. Chiummo, M. Factourovich, M. E. Gáspár, A. K. Zadrożny, K. Wette, Ryan DeRosa, G. Vedovato, D. B. Kozak, John J. Oh, Timothy Evans, C. Vorvick, V. Brisson, M. Sung, C. Adams, A. Khalaidovski, R. Engel, V. Boschi, Joseph D. Romano, B. Bland, T. Etzel, H. P. Daveloza, Moritz Mehmet, B. Lantz, Thanh Vinh Nguyen, David Blair, F. Salemi, D. Sigg, S. W. Ballmer, Philip Graff, R. M. Cutler, M. Pedraza, J. Steinlechner, P. Campsie, P. Leaci, A. Colla, Luca Gammaitoni, Kasem Mossavi, P. Thomas, D. Nolting, L. Bonelli, P. Schwinberg, Stefaan Franco, Maria Alessandra Papa, C. C. Yancey, G. Moreno, F. Cavalier, A. Nitz, W. G. Anderson, G. Cella, Karoline Wiesner, R. M. S. Schofield, T. Eberle, Erik Katsavounidis, Giacomo Ciani, A. Mullavey, B. P. Abbott, Matthew Benacquista, E. K. Gustafson, D. E. Clark, D. Barker, Benjamin J. Owen, F. Martelli, J. F. J. van den Brand, Collin Capano, S. Vass, S. Frasca, C. Robinson, Benjamin William Allen, M. Tacca, C. Affeldt, Martin Hendry, Christopher Wipf, Douglas H Beck, G. Szeifert, K. V. Tokmakov, Gianluca Persichetti, Fabrice Matichard, W. Kells, Lucía Santamaría, R. Taylor, J. Slutsky, Imre Bartos, M. J. Lubinski, Jolien D. E. Creighton, Karsten Danzmann, M. Colombini, Martin Hewitson, Junwei Cao, N. Morgado, K. Evans, Stephen Fairhurst, S. Caride, Lindy Blackburn, V. Quetschke, Bangalore Suryanarayana Sathyaprakash, E. Black, Sanichiro Yoshida, T. P. Bodiya, J. R. Smith, R. Bork, M. Punturo, Leopoldo Milano, S. Roddy, C. Buy, Graham Woan, K. Holt, Tristan Briant, T. Nash, Robert L. Byer, Stuart Reid, Rajesh Kumar, G. Endroczi, Chunglee Kim, V. Sandberg, S. Mosca, M. Vavoulidis, Vladimir B. Braginsky, Jeffery Kline, G. H. Ogin, L. Pinard, J. D. Lough, B. Schulz, H. Vahlbruch, H. Fehrmann, J. Garcia, J. O'Dell, T. Dayanga, K. Riles, J. Y. Vinet, F. Carbognani, Federico Ferrini, Haixing Miao, S. L. Danilishin, G. Vajente, Bernard F. Schutz, O. Bock, N. Fotopoulos, István Rácz, Li Ju, D. Moraru, Daniel A. Shaddock, Lee Samuel Finn, K. L. Dooley, Kip S. Thorne, T. Chalermsongsak, Alessandro Bertolini, J. Hanson, M. Stefszky, M. Weinert, D. Yeaton-Massey, T. Reed, Lisa Barsotti, F. Fidecaro, G. M. Guidi, J.-F. Hayau, M. Yvert, T. D. Abbott, Guido Mueller, A. Stochino, V. P. Mitrofanov, W. Del Pozzo, P. F. Cohadon, Trevor Sidery, H. Heitmann, B. Rankins, Joshua Yablon, Alessandra Toncelli, David Murphy, R. J. G. Jonker, L. Wallace, H. Radkins, F. Vetrano, A. Królak, M. H. Wimmer, R. Frey, J. Abadie, Evan Ochsner, S. E. Dwyer, P. J. King, B. Shapiro, J. M. Berliner, A. J. Weinstein, J. Pöld, A. G. Wiseman, David Coward, Sheon Chua, P. T. Beyersdorf, C. J. Guido, Christian Röver, R. Bonnand, L. Sperandio, Suvadeep Bose, Z. Márka, D. C. Coyne, K. Grover, Jan Harms, M. Landry, K. Izumi, Satyanarayan Ray Pitambar Mohapatra, L. Di Fiore, E. Steinert, M. R. Smith, Eric Howell, M. Edwards, M. Pickenpack, M. Barsuglia, A. Rocchi, L. K. Nuttall, D. Buskulic, F. Kawazoe, O. Torre, E. Cuoco, S. Gil-Casanova, M. R. Abernathy, Nico Lastzka, G. Billingsley, S. Meshkov, Seog Oh, A. Grant, T. Hong, L. Bosi, A. Cumming, E. Genin, Maria Ilaria Del Principe, L. Zhang, M. Agathos, S. R. Morriss, Alberto Vecchio, A. M. Gretarsson, J. Bauchrowitz, Roman Schnabel, A. Dietz, J. K. Blackburn, E. Chassande-Mottin, J. E. Brau, B. Canuel, A. A. van Veggel, Sheila Rowan, Lutz Winkelmann, Efim A. Khazanov, G. Ballardin, Todd Adams, Fiona C. Speirits, B. Hughey, M. Phelps, John Veitch, C. Titsler, F. Clara, M. MacInnis, P. Rapagnani, Andreas Freise, Vincenzo Pierro, Matthew Pitkin, R. Wooley, M. Wade, M. Granata, M. Parisi, M. G. Beker, T. Huynh-Dinh, Dustin Anderson, J. S. Kissel, Marc Favata, K. Yamamoto, L. E. Wade, Roger Jones, K. Kawabe, S. M. Aston, Michael W. Coughlin, M. Mageswaran, J. Betzwieser, Antoine Heidmann, H. Overmier, D. Sellers, D. Hoak, D. Sentenac, Patrick Brady, Zhi Liu, Laboratoire d'Annecy de Physique des Particules ( LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), APC - Cosmologie, Physique Corpusculaire et Cosmologie - Collège de France ( PCC ), Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Observatoire de Paris-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Physique de Rennes ( IPR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire des matériaux avancés ( LMA ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux ( ARTEMIS ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), APC - Gravitation ( APC-Gravitation ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Max-Planck-Institut-Max-Planck-Institut, (Astro)-Particles Physics, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique de Rennes (IPR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des matériaux avancés (LMA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux (ARTEMIS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), APC - Gravitation (APC-Gravitation), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Aasi, J., Abadie, J., Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M., Accadia, T., Acernese, F., Adams, C., Adams, T., Addesso, P., Adhikari, R., Affeldt, C., Agathos, M., Agatsuma, K., Ajith, P., Allen, B., Allocca, A., Amador Ceron, E., Amariutei, D., Anderson, S. B., Anderson, W. G., Arai, K., Araya, M. C., Ast, S., Aston, S. M., Astone, P., Atkinson, D., Aufmuth, P., Aulbert, C., Aylott, B. E., Babak, S., Baker, P., Ballardin, G., Ballmer, S., Bao, Y., Barayoga, J. C. B., Barker, D., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barton, M. A., Bartos, I., Bassiri, R., Bastarrika, M., Basti, A., Batch, J., Bauchrowitz, J., Bauer, T. h. S., Bebronne, M., Beck, D., Behnke, B., Bejger, M., Beker, M. G., Bell, A. S., Bell, C., Belopolski, I., Benacquista, M., Berliner, J. M., Bertolini, A., Betzwieser, J., Beveridge, N., Beyersdorf, P. T., Bhadbade, T., Bilenko, I. A., Billingsley, G., Birch, J., Biswas, R., Bitossi, M., Bizouard, M. A., Black, E., Blackburn, J. K., Blackburn, L., Blair, D., Bland, B., Blom, M., Bock, O., Bodiya, T. P., Bogan, C., Bond, C., Bondarescu, R., Bondu, F., Bonelli, L., Bonnand, R., Bork, R., Born, M., Boschi, V., Bose, S., Bosi, L., Bouhou, B., Braccini, S., Bradaschia, C., Brady, P. R., Braginsky, V. B., Branchesi, M., Brau, J. E., Breyer, J., Briant, T., Bridges, D. O., Brillet, A., Brinkmann, M., Brisson, V., Britzger, M., Brooks, A. F., Brown, D. A., Bulik, T., Bulten, H. J., Buonanno, A., Burguet Castell, J., Buskulic, D., Buy, C., Byer, R. L., Cadonati, L., Cagnoli, G., Calloni, Enrico, Camp, J. B., Campsie, P., Cannon, K., Canuel, B., Cao, J., Capano, C. D., Carbognani, F., Carbone, L., Caride, S., Caudill, S., Cavaglià, M., Cavalier, F., Cavalieri, R., Cella, G., Cepeda, C., Cesarini, E., Chalermsongsak, T., Charlton, P., Chassande Mottin, E., Chen, W., Chen, X., Chen, Y., Chincarini, A., Chiummo, A., Cho, H. S., Chow, J., Christensen, N., Chua, S. S. Y., Chung, C. T. Y., Chung, S., Ciani, G., Clara, F., Clark, D. E., Clark, J. A., Clayton, J. H., Cleva, F., Coccia, E., Cohadon, P. F., Colacino, C. N., Colla, A., Colombini, M., Conte, A., Conte, R., Cook, D., Corbitt, T. R., Cordier, M., Cornish, N., Corsi, A., Costa, C. A., Coughlin, M., Coulon, J. P., Couvares, P., Coward, D. M., Cowart, M., Coyne, D. C., Creighton, J. D. E., Creighton, T. D., Cruise, A. M., Cumming, A., Cunningham, L., Cuoco, E., Cutler, R. M., Dahl, K., Damjanic, M., Danilishin, S. L., D’Antonio, S., Danzmann, K., Dattilo, V., Daudert, B., Daveloza, H., Davier, M., Daw, E. J., Day, R., Dayanga, T., DE ROSA, Rosario, Debra, D., Debreczeni, G., Degallaix, J., Del Pozzo, W., Dent, T., Dergachev, V., Derosa, R., Dhurandhar, S., Di Fiore, L., Di Lieto, A., Di Palma, I., Di Paolo Emilio, M., Di Virgilio, A., Díaz, M., Dietz, A., Donovan, F., Dooley, K. L., Doravari, S., Dorsher, S., Drago, M., Drever, R. W. P., Driggers, J. C., Du, Z., Dumas, J. C., Dwyer, S., Eberle, T., Edgar, M., Edwards, M., Effler, A., Ehrens, P., Endrőczi, G., Engel, R., Etzel, T., Evans, K., Evans, M., Evans, T., Factourovich, M., Fafone, V., Fairhurst, S., Farr, B. F., Favata, M., Fazi, D., Fehrmann, H., Feldbaum, D., Ferrante, I., Ferrini, F., Fidecaro, F., Finn, L. S., Fiori, I., Fisher, R. P., Flaminio, R., Foley, S., Forsi, E., Fotopoulos, N., Fournier, J. D., Franc, J., Franco, S., Frasca, S., Frasconi, F., Frede, M., Frei, M. A., Frei, Z., Freise, A., Frey, R., Fricke, T. T., Friedrich, D., Fritschel, P., Frolov, V. V., Fujimoto, M. K., Fulda, P. J., Fyffe, M., Gair, J., Galimberti, M., Gammaitoni, L., Garcia, J., Garufi, Fabio, Gáspár, M. E., Gelencser, G., Gemme, G., Genin, E., Gennai, A., Gergely, L. Á., Ghosh, S., Giaime, J. A., Giampanis, S., Giardina, K. D., Giazotto, A., Gil Casanova, S., Gill, C., Gleason, J., Goetz, E., González, G., Gorodetsky, M. L., Goßler, S., Gouaty, R., Graef, C., Graff, P. B., Granata, M., Grant, A., Gray, C., Greenhalgh, R. J. S., Gretarsson, A. M., Griffo, C., Grote, H., Grover, K., Grunewald, S., Guidi, G. M., Guido, C., Gupta, R., Gustafson, E. K., Gustafson, R., Hallam, J. M., Hammer, D., Hammond, G., Hanks, J., Hanna, C., Hanson, J., Harms, J., Harry, G. M., Harry, I. W., Harstad, E. D., Hartman, M. T., Haughian, K., Hayama, K., Hayau, J. F., Heefner, J., Heidmann, A., Heitmann, H., Hello, P., Hendry, M. A., Heng, I. S., Heptonstall, A. W., Herrera, V., Heurs, M., Hewitson, M., Hild, S., Hoak, D., Hodge, K. A., Holt, K., Holtrop, M., Hong, T., Hooper, S., Hough, J., Howell, E. J., Hughey, B., Husa, S., Huttner, S. H., Huynh Dinh, T., Ingram, D. R., Inta, R., Isogai, T., Ivanov, A., Izumi, K., Jacobson, M., James, E., Jang, Y. J., Jaranowski, P., Jesse, E., Johnson, W. W., Jones, D. I., Jones, R., Jonker, R. J. G., Ju, L., Kalmus, P., Kalogera, V., Kandhasamy, S., Kang, G., Kanner, J. B., Kasprzack, M., Kasturi, R., Katsavounidis, E., Katzman, W., Kaufer, H., Kaufman, K., Kawabe, K., Kawamura, S., Kawazoe, F., Keitel, D., Kelley, D., Kells, W., Keppel, D. G., Keresztes, Z., Khalaidovski, A., Khalili, F. Y., Khazanov, E. A., Kim, B. K., Kim, C., Kim, H., Kim, K., Kim, N., Kim, Y. M., King, P. J., Kinzel, D. L., Kissel, J. S., Klimenko, S., Kline, J., Kokeyama, K., Kondrashov, V., Koranda, S., Korth, W. Z., Kowalska, I., Kozak, D., Kringel, V., Krishnan, B., Królak, A., Kuehn, G., Kumar, P., Kumar, R., Kurdyumov, R., Kwee, P., Lam, P. K., Landry, M., Langley, A., Lantz, B., Lastzka, N., Lawrie, C., Lazzarini, A., Leaci, P., Lee, C. H., Lee, H. K., Lee, H. M., Leong, J. R., Leonor, I., Leroy, N., Letendre, N., Lhuillier, V., Li, J., T. G. F., Li, Lindquist, P. E., Litvine, V., Liu, Y., Liu, Z., Lockerbie, N. A., Lodhia, D., Logue, J., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J., Lubinski, M., Lück, H., Lundgren, A. P., Macarthur, J., Macdonald, E., Machenschalk, B., Macinnis, M., Macleod, D. M., Mageswaran, M., Mailand, K., Majorana, E., Maksimovic, I., Malvezzi, V., Man, N., Mandel, I., Mandic, V., Mantovani, M., Marchesoni, F., Marion, F., Márka, S., Márka, Z., Markosyan, A., Maros, E., Marque, J., Martelli, F., Martin, I. W., Martin, R. M., Marx, J. N., Mason, K., Masserot, A., Matichard, F., Matone, L., Matzner, R. A., Mavalvala, N., Mazzolo, G., Mccarthy, R., Mcclelland, D. E., Mcguire, S. C., Mcintyre, G., Mciver, J., Meadors, G. D., Mehmet, M., Meier, T., Melatos, A., Melissinos, A. C., Mendell, G., Menéndez, D. F., Mercer, R. A., Meshkov, S., Messenger, C., Meyer, M. S., Miao, H., Michel, C., Milano, L., Miller, J., Minenkov, Y., Mingarelli, C. M. F., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Moe, B., Mohan, M., Mohapatra, S. R. P., Moraru, D., Moreno, G., Morgado, N., Morgia, A., Mori, T., Morriss, S. R., Mosca, S., Mossavi, K., Mours, B., Mow Lowry, C. M., Mueller, C. L., Mueller, G., Mukherjee, S., Mullavey, A., Müller Ebhardt, H., Munch, J., Murphy, D., Murray, P. G., Mytidis, A., Nash, T., Naticchioni, L., Necula, V., Nelson, J., Neri, I., Newton, G., Nguyen, T., Nishizawa, A., Nitz, A., Nocera, F., Nolting, D., Normandin, M. E., Nuttall, L., Ochsner, E., O’Dell, J., Oelker, E., Ogin, G. H., J. J., Oh, S. H., Oh, Oldenberg, R. G., O’Reilly, B., O’Shaughnessy, R., Osthelder, C., Ott, C. D., Ottaway, D. J., Ottens, R. S., Overmier, H., Owen, B. J., Page, A., Palladino, L., Palomba, C., Pan, Y., Paoletti, F., Paoletti, R., Papa, M. A., Parisi, M., Pasqualetti, A., Passaquieti, R., Passuello, D., Pedraza, M., Penn, S., Perreca, A., Persichetti, G., Phelps, M., Pichot, M., Pickenpack, M., Piergiovanni, F., Pierro, V., Pihlaja, M., Pinard, L., Pinto, I. M., Pitkin, M., Pletsch, H. J., Plissi, M. V., Poggiani, R., Pöld, J., Postiglione, F., Poux, C., Prato, M., Predoi, V., Prestegard, T., Price, L. R., Prijatelj, M., Principe, M., Privitera, S., Prix, R., Prodi, G. A., Prokhorov, L. G., Puncken, O., Punturo, M., Puppo, P., Quetschke, V., Quitzow James, R., Raab, F. J., Rabeling, D. S., Rácz, I., Radkins, H., Raffai, P., Rakhmanov, M., Ramet, C., Rankins, B., Rapagnani, P., Raymond, V., Re, V., Reed, C. M., Reed, T., Regimbau, T., Reid, S., Reitze, D. H., Ricci, F., Riesen, R., Riles, K., Roberts, M., Robertson, N. A., Robinet, F., Robinson, C., Robinson, E. L., Rocchi, A., Roddy, S., Rodriguez, C., Rodruck, M., Rolland, L., Rollins, J. G., Romano, J. D., Romano, R., Romie, J. H., Rosińska, D., Röver, C., Rowan, S., Rüdiger, A., Ruggi, P., Ryan, K., Salemi, F., Sammut, L., Sandberg, V., Sankar, S., Sannibale, V., Santamaría, L., Santiago Prieto, I., Santostasi, G., Saracco, E., Sathyaprakash, B. S., Saulson, P. R., Savage, R. L., Schilling, R., Schnabel, R., Schofield, R. M. S., Schulz, B., Schutz, B. F., Schwinberg, P., Scott, J., Scott, S. M., Seifert, F., Sellers, D., Sentenac, D., Sergeev, A., Shaddock, D. A., Shaltev, M., Shapiro, B., Shawhan, P., Shoemaker, D. H., Sidery, T. L., Siemens, X., Sigg, D., Simakov, D., Singer, A., Singer, L., Sintes, A. M., Skelton, G. R., Slagmolen, B. J. J., Slutsky, J., Smith, J. R., Smith, M. R., Smith, R. J. E., Smith Lefebvre, N. D., Somiya, K., Sorazu, B., Speirits, F. C., Sperandio, L., Stefszky, M., Steinert, E., Steinlechner, J., Steinlechner, S., Steplewski, S., Stochino, A., Stone, R., Strain, K. A., Strigin, S. E., Stroeer, A. S., Sturani, R., Stuver, A. L., Summerscales, T. Z., Sung, M., Susmithan, S., Sutton, P. J., Swinkels, B., Szeifert, G., Tacca, M., Taffarello, L., Talukder, D., Tanner, D. B., Tarabrin, S. P., Taylor, R., ter Braack, A. P. M., Thomas, P., Thorne, K. A., Thorne, K. S., Thrane, E., Thüring, A., Titsler, C., Tokmakov, K. V., Tomlinson, C., Toncelli, A., Tonelli, M., Torre, O., Torres, C. V., Torrie, C. I., Tournefier, E., Travasso, F., Traylor, G., Tse, M., Ugolini, D., Vahlbruch, H., Vajente, G., van den Brand, J. F. J., Van Den Broeck, C., van der Putten, S., van Veggel, A. A., Vass, S., Vasuth, M., Vaulin, R., Vavoulidis, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venkateswara, K., Verkindt, D., Vetrano, F., Viceré, A., Villar, A. E., Vinet, J. Y., Vitale, S., Vocca, H., Vorvick, C., Vyatchanin, S. P., Wade, A., Wade, L., Wade, M., Waldman, S. J., Wallace, L., Wan, Y., Wang, M., Wang, X., Wanner, A., Ward, R. L., Was, M., Weinert, M., Weinstein, A. J., Weiss, R., Welborn, T., Wen, L., Wessels, P., West, M., Westphal, T., Wette, K., Whelan, J. T., Whitcomb, S. E., White, D. J., Whiting, B. F., Wiesner, K., Wilkinson, C., Willems, P. A., Williams, L., Williams, R., Willke, B., Wimmer, M., Winkelmann, L., Winkler, W., Wipf, C. C., Wiseman, A. G., Wittel, H., Woan, G., Wooley, R., Worden, J., Yablon, J., Yakushin, I., Yamamoto, H., Yamamoto, K., Yancey, C. C., Yang, H., Yeaton Massey, D., Yoshida, S., Yvert, M., Zadrożny, A., Zanolin, M., Zendri, J. P., Zhang, F., Zhang, L., Zhao, C., Zotov, N., Zucker, M. E., Zweizig, J., Anderson, D. P., Pinto, Innocenzo, Massachusetts Institute of Technology. Department of Physics, MIT Kavli Institute for Astrophysics and Space Research, LIGO (Observatory : Massachusetts Institute of Technology), Barsotti, Lisa, Bodiya, Timothy Paul, Corbitt, Thomas R., Donovan, Frederick J., Evans, Matthew J., Fritschel, Peter K., Katsavounidis, Erotokritos, Kissel, Jeffrey S., Kwee, Patrick, MacInnis, Myron E., Matichard, Fabrice, Mavalvala, Nergis, Mittleman, Richard K., Oelker, Eric Glenn, Shoemaker, David H., Vaulin, Ruslan, Wipf, Christopher, Zucker, Michael E., Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Centre National de la Recherche Scientifique (CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), The LIGO Scientific Collaboration, and The Virgo Collaboration
- Subjects
Physics and Astronomy (miscellaneous) ,gravitational waves ,pulsar ,interferometers ,Astrophysics ,01 natural sciences ,General Relativity and Quantum Cosmology ,general relativity ,Range (statistics) ,PACS number: 04.80.Nn ,PACS numbers: 95.55.Ym ,PACS number: 97.60.Gb ,PACS number: 07.05.Kf ,NEUTRON-STAR ,HOUGH TRANSFORM ,PULSAR ,RADIATION ,EMISSION ,010303 astronomy & astrophysics ,QC ,QB ,media_common ,LIGO Scientific Collaboration ,Physics ,Settore FIS/01 - Fisica Sperimentale ,[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Nuclear and High Energy Physics ,3. Good health ,Neutron-star ,Amplitude ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Astrophysics - Instrumentation and Methods for Astrophysics ,Gravitation ,Einstein@Home ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,media_common.quotation_subject ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Settore FIS/05 - Astronomia e Astrofisica ,Pulsar ,0103 physical sciences ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010308 nuclear & particles physics ,Gravitational wave ,LIGO ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Sky ,[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
This paper presents results of an all-sky searches for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative ranges of [-2 x 10^-9, 1.1 x 10^-10] Hz/s for the fifth LIGO science run (S5). The novelty of the search lies in the use of a non-coherent technique based on the Hough-transform to combine the information from coherent searches on timescales of about one day. Because these searches are very computationally intensive, they have been deployed on the Einstein@Home distributed computing project infrastructure. The search presented here is about a factor 3 more sensitive than the previous Einstein@Home search in early S5 LIGO data. The post-processing has left us with eight surviving candidates. We show that deeper follow-up studies rule each of them out. Hence, since no statistically significant gravitational wave signals have been detected, we report upper limits on the intrinsic gravitational wave amplitude h0. For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h0 greater than 7.6 x 10^-25 with a 90% confidence level., 29 pages, 14 figures, 6 tables. Science summary page at http://www.ligo.org/science/Publication-FullS5EatH/index.php ; Public access area to figures and tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p1200026
- Published
- 2013
50. Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
- Author
-
R. De Rosa, Laura Cadonati, Rana X. Adhikari, Carlos Cepeda, Robert J. McCarthy, Linqing Wen, B. Machenschalk, F. Donovan, V. Lhuillier, Susan M. Scott, Teviet Creighton, G. McIntyre, D. Lodhia, Maik Frede, Chad Hanna, M. Branchesi, J. C. Batch, K. A. Hodge, A. K. Zadrożny, V. Boschi, V. Malvezzi, M. Bebronne, Carl-Johan Haster, N. Morgado, L. Rolland, Fabrizio Barone, M. Mohan, N. Man, K. Haughian, Ludovico Carbone, P. Couvares, Benno Willke, E. Goetz, T. Dent, Kazuhiro Hayama, D. Talukder, C. V. Torres, I. W. Harry, R. Gouaty, M. Factourovich, J. Betzwieser, Antoine Heidmann, Leo Singer, L. Naticchioni, M. A. Barton, Carl L. Rodriguez, Sascha Husa, Meng Wang, C. Wilkinson, D. Amariutei, Janyce Franc, David H. Shoemaker, Holger J. Pletsch, D. Verkindt, R. L. Ward, P. J. Sutton, J. H. Romie, R. Kurdyumov, A. F. Brooks, Lutz Winkelmann, Kasem Mossavi, M. T. Hartman, V. Kringel, M. Pihlaja, Tomasz Bulik, François Bondu, Fausto Acernese, V. Kondrashov, H. Overmier, S. Kandhasamy, N. A. Robertson, C. N. Colacino, Jordan Camp, R. G. Oldenberg, D.B. DeBra, S. Braccini, V. Litvine, T. Bhadbade, J. Breyer, C. Gray, G. Kuehn, L. Cunningham, Alessandra Buonanno, M. Mantovani, Kentaro Somiya, M. Brinkmann, F. J. Raab, F. Garufi, G. Santostasi, F. Nocera, D. J. White, C. Zhao, Fiona C. Speirits, John Veitch, D. Sellers, C. Affeldt, D. Hammer, Y. Minenkov, D. Feldbaum, T. Meier, A. Morgia, Fabio Postiglione, S. Chung, C. Poux, R. Gustafson, M. E. Normandin, Eric Howell, I. Yakushin, L. Sammut, Zoltán Keresztes, F. Cleva, C. Titsler, Sunil Susmithan, R. Taylor, W. Chen, W. Z. Korth, P. Wessels, L. Pinard, J. Garcia, Jong H. Chow, A. Pasqualetti, S. E. Whitcomb, P. Kwee, K. A. Thorne, S. Giampanis, A. Gennai, H. Wittel, Federico Ferrini, S. Penn, D. Barker, T. P. Bodiya, G. Vajente, Kazuhiro Agatsuma, M. A. Bizouard, V. Loriette, L. K. Nuttall, M. MacInnis, S. Gil-Casanova, M. R. Abernathy, F. Frasconi, A. S. Stroeer, Peter Kalmus, P. Rapagnani, F. Seifert, Peter Fritschel, T. Accadia, David Jones, S. E. Strigin, C. Buy, B. Behnke, Riccardo Sturani, G. M. Harry, Nico Lastzka, K. Venkateswara, V. Predoi, I. W. Martin, J. C. Driggers, Virginio Sannibale, David E. McClelland, J. Macarthur, Y. Bao, G. Billingsley, S. Roddy, Tristan Briant, Marco Cavaglia, Badri Krishnan, V. Dattilo, M. Tse, D. M. Macleod, L. Bosi, S. Foley, H. Kaufer, D. Hoak, D. Sentenac, S. Mosca, Patrick Brady, R. Schilling, Matthew Evans, P. J. Veitch, G. Kang, M. Vavoulidis, C. R. Ramet, R. Flaminio, B. L. Swinkels, Huan Yang, Kip S. Thorne, T. Chalermsongsak, Alessandro Bertolini, J. Zweizig, Saranya Ghosh, Ryan DeRosa, Koji Arai, Sanichiro Yoshida, Jeffery Kline, Xuan Wang, J. D. Lough, A. R. Wade, C. M. Mow-Lowry, Jessica McIver, Stefan Hild, S. D'Antonio, Graham Woan, M. Rodruck, Jonah Kanner, Sergey P. Vyatchanin, B. Schulz, M. Pichot, R. Kasturi, A. M. Sintes, J. O'Dell, T. Dayanga, R. Inta, S. Klimenko, A. W. Heptonstall, Peter R. Saulson, Zhi Liu, M. Born, K. Mailand, Peter Aufmuth, Sebastian Steinlechner, M. Damjanic, T. Reed, C. Graef, Tania Regimbau, A. Khalaidovski, R. Engel, Robert L. Byer, Stuart Reid, F. Salemi, A. Brillet, A. Conte, K. Kaufman, A. Singer, Lee Samuel Finn, J. C. Dumas, D. Ugolini, B. F. Whiting, T. Huynh-Dinh, Timothy A Welborn, Enrico Calloni, G. Traylor, R. L. Savage, A. S. Bell, Thomas Corbitt, V. Herrera, C. A. Costa, J.-F. Hayau, M. Yvert, T. D. Abbott, Y. J. Jang, Seiji Kawamura, Elizabeth Harstad, Hyun-Chul Kim, R. Mittleman, M. Lormand, Robert Stone, Nelson Christensen, D. Keitel, L. G. Prokhorov, J. S. Kissel, C. J. Bell, A. Stochino, S. B. Anderson, B. Moe, Ruslan Vaulin, P. Leaci, A. Colla, J. Aasi, V. P. Mitrofanov, S. Dorsher, T. Etzel, H. P. Daveloza, A. Di Lieto, C. Van Den Broeck, Chris Pankow, B. Mours, J. N. Marx, László Á. Gergely, Albert Lazzarini, R. Passaquieti, L. Wallace, A. Królak, R. Frey, Marc Favata, K. Yamamoto, L. E. Wade, L. Palladino, Bernard F. Schutz, Masa-Katsu Fujimoto, J. Heefner, Li Ju, M. Shaltev, N. Letendre, A. Langley, E. Jesse, Mirko Prato, W. Del Pozzo, P. F. Cohadon, David B. Tanner, Roger Jones, N. Zotov, K. Mason, T. Isogai, D. Nolting, M. Sung, A. Nitz, F. Y. Khalili, G. Mazzolo, M. Vasúth, L. Bonelli, G. A. Prodi, Alexander Wanner, C. T. Y. Chung, Rahul Biswas, Michael E Zucker, Daniel A. Shaddock, J. Hanson, Trevor Sidery, H. Heitmann, A. Di Virgilio, Karoline Wiesner, P. J. King, T. Eberle, A. Chiummo, B. Shapiro, A. Allocca, M. Stefszky, John A. Clark, Sanjeev Dhurandhar, R. Cavalieri, Jordi Burguet-Castell, V. Re, B. Bland, N. Beveridge, C. I. Torrie, B. Rankins, Joshua Yablon, M. Blom, Elena Cesarini, M. Pedraza, Stefaan Franco, J. P. Zendri, Y. Wan, Ben Farr, F. Martelli, E. Amador Ceron, F. Piergiovanni, Chang-Hwan Lee, Ho-Gyu Lee, Luca Gammaitoni, Guido Mueller, A. G. Wiseman, Kipp Cannon, Walter Winkler, Kevin M. Ryan, D. R. Ingram, Phil Willems, K. Kawabe, Xin Chen, R. M. Martin, J. Slutsky, Imre Bartos, J. H. Clayton, M. Di Paolo Emilio, A. S. Markosyan, Namjun Kim, Grant David Meadors, Takao Mori, V. Quetschke, Bangalore Suryanarayana Sathyaprakash, S. M. Aston, Harald Lück, J. Logue, Michael W. Coughlin, Paul Fulda, Maria Alessandra Papa, F. Cavalier, M. Prijatelj, E. Tournefier, A. Basti, David Murphy, M. Holtrop, D. C. Coyne, K. Grover, K. Izumi, Katrin Dahl, F. Travasso, M. Davier, R. S. Ottens, Michał Bejger, A. Effler, C. Palomba, Collin Capano, A. Giazotto, P. Shawhan, M. H. Wimmer, I. Ferrante, J. Abadie, M. Mageswaran, Xavier Siemens, J.-P. Coulon, B. J. J. Slagmolen, Hee-Suk Cho, M. Britzger, S. C. McGuire, E. Black, Satya Mohapatra, J. R. Smith, R. Bork, S. Privitera, T. Nash, Z. Frei, Ilya Mandel, E. Macdonald, I. Leonor, M. Was, B. Lantz, Andreas Freise, Vincenzo Pierro, Philip Graff, G. H. Ogin, A. Perreca, M. C. Araya, G. Gemme, M. Drago, Guenakh Mitselmakher, John Miller, T. Prestegard, V. Brisson, S. Ast, C. M. Reed, K. Kokeyama, Eric Thrane, Eric W. James, C. Michel, Sarah Caudill, P. Puppo, Chiara M. F. Mingarelli, P. Charlton, H. Vocca, J.-D. Fournier, Alessandra Corsi, Matthew Pitkin, D. Rosińska, I. Maksimovic, O. Puncken, D. Friedrich, J. Marque, B. K. Kim, G. Hemming, R. Wooley, R. J. S. Greenhalgh, D. Passuello, A. Viceré, Hyun Lee, Anton B. Ivanov, A. L. Stuver, A. M. Sergeev, Yi Chen, M. S. Meyer, S. Sankar, C. Griffo, M. Wade, R. Quitzow-James, B. Daudert, P. G. Murray, N. D. Smith-Lefebvre, P. Baker, J. Birch, S. Frasca, R. M. S. Schofield, Matthew Benacquista, E. J. Daw, I. Fiori, Riccardo Bassiri, J. H. Hough, Jolien D. E. Creighton, S. Caride, Rainer Weiss, Benjamin J. Owen, M. Granata, E. Coccia, E. Maros, S. Doravari, Igor Neri, F. Ricci, R. W. P. Drever, Paolo Addesso, K. D. Giardina, Christian D. Ott, C. Gill, Samuel J. Waldman, Marco Aurelio Diaz, C. Bradaschia, M. Tonelli, V. Necula, W. W. Johnson, A. P. M. ter Braack, I. Santiago-Prieto, Innocenzo M. Pinto, Larry R. Price, J. G. Rollins, C. Bogan, I. A. Bilenko, Ik Siong Heng, A. Rüdiger, David J. Ottaway, J. F. J. van den Brand, M. Tacca, V. V. Frolov, Martin Hendry, Christopher Wipf, K. V. Tokmakov, Richard A. Matzner, Lindy Blackburn, B. Bouhou, C. Robinson, Douglas R. Cook, K. Holt, Chunglee Kim, Piotr Jaranowski, Florent Robinet, Matthew West, C. Messenger, Riccardo Paoletti, Thanh Vinh Nguyen, David Blair, M. Parisi, M. G. Beker, S. Steplewski, Emma L. Robinson, Fan Zhang, Michele Zanolin, Martin Hewitson, Junwei Cao, Benjamin William Allen, G. Szeifert, Karsten Danzmann, M. Colombini, V. Kalogera, Stephen Fairhurst, Joseph Gleason, M. Galimberti, V. Sandberg, D. H. Reitze, F. Marion, G. Gelencser, S. Grunewald, N. Leroy, M. Kasprzack, V. Fafone, Charlotte Bond, M. Punturo, Leopoldo Milano, C. Lawrie, G. D. Hammond, Stanislav Babak, John Nelson, Amanda J. Page, Ping Koy Lam, G. Debreczeni, F. Paoletti, Duncan A. Brown, M. Heurs, M. Bastarrika, M. E. Gáspár, G. Vedovato, D. B. Kozak, P. Ruggi, C. Vorvick, M. Jacobson, M. J. Cowart, B. Sorazu, S. Márka, H. Yamamoto, Mallory S. E. Roberts, A. Thüring, Kenneth A. Strain, M. C. Heintze, P. Schwinberg, C. C. Yancey, Ruxandra Bondarescu, G. Mendell, Fabio Marchesoni, P. Hello, Moritz Mehmet, Richard O'Shaughnessy, B. Barr, J. Steinlechner, A. C. Melissinos, Andrea Chincarini, P. Astone, B. Sassolas, G. R. Skelton, W. G. Anderson, C. Osthelder, Andrew Lundgren, G. Cella, C. L. Mueller, V. Raymond, T. Z. Summerscales, Giacomo Ciani, A. Mullavey, B. P. Abbott, E. K. Gustafson, W. Katzman, R. J.E. Smith, D. E. Clark, Jonathan R. Gair, L. A. Forte, D. O. Bridges, Rebecca Fisher, J. Li, B. E. Aylott, F. Carbognani, Malik Rakhmanov, J. Worden, L. Williams, A. Le Roux, Prayush Kumar, S. Vass, N. A. Lockerbie, Roy Williams, Kyungmin Kim, A. M. Cruise, Fabrice Matichard, G. P. Newton, Ettore Majorana, S. Vitale, M. Fyffe, Yueh-Feng Liu, B. O'Reilly, P. Ehrens, Gabriela Gonzalez, J. M. Hallam, W. Kells, Lucía Santamaría, Vladimir Dergachev, James Whelan, M. Bitossi, E. Forsi, P. Ajith, R. Riesen, M. Cordier, K. Wette, Vuk Mandic, John J. Oh, Th. S. Bauer, D. B. Kelley, Timothy Evans, Zhihui Du, C. Adams, D. Sigg, Eric Oelker, S. W. Ballmer, Yi Pan, J. A. Giaime, Y. M. Kim, Tenglin Li, R. M. Cutler, Rosa Poggiani, P. Campsie, G. Moreno, S. P. Tarabrin, Shaun Hooper, D. F. Menéndez, P. Raffai, Stefan Goßler, I. Kowalska, J. Hanks, S. Van Der Putten, Ranjan Gupta, H. Radkins, E. Saracco, J. C. Barayoga, C. Tomlinson, Richard J. Abbott, Soma Mukherjee, Michael L. Gorodetsky, Drew Keppel, J. M. Berliner, T. Westphal, A. E. Villar, H. Müller-Ebhardt, M. V. Plissi, Nergis Mavalvala, David Coward, Jerome Degallaix, Sheon Chua, C. J. Guido, Christian Röver, R. Bonnand, L. Sperandio, D. S. Rabeling, Rocco Romano, I. Di Palma, Hartmut Grote, Farhan Feroz, G. Losurdo, John D. Scott, D. L. Kinzel, R. A. Mercer, Neil J. Cornish, Matthew P. Edgar, Jesper Munch, P. E. Lindquist, M. A. Frei, D. Fazi, S. H. Huttner, D. Atkinson, Andrew Melatos, M. Lorenzini, A. Masserot, L. Taffarello, Ilya Belopolski, A. Mytidis, Atsushi J. Nishizawa, H. J. Bulten, T. T. Fricke, Roberto Conte, C. Aulbert, D. Simakov, Scott Koranda, L. Matone, J. R. Leong, Evan Ochsner, A. J. Weinstein, P. T. Beyersdorf, M. Landry, L. Di Fiore, M. Barsuglia, A. Grant, L. Zhang, Roman Schnabel, J. E. Brau, B. Canuel, A. A. van Veggel, Efim A. Khazanov, G. Ballardin, M. Phelps, F. Clara, P. Thomas, Erik Katsavounidis, Douglas H Beck, M. J. Lubinski, K. Evans, Rajesh Kumar, Vladimir B. Braginsky, H. Vahlbruch, K. Riles, J. Y. Vinet, N. Fotopoulos, M. Weinert, F. Fidecaro, G. M. Guidi, A. Cumming, E. Genin, A. M. Gretarsson, J. Bauchrowitz, J. K. Blackburn, E. Chassande-Mottin, Sheila Rowan, Todd Adams, Gianluca Persichetti, G. Endroczi, Haixing Miao, S. L. Danilishin, O. Bock, István Rácz, K. L. Dooley, Lisa Barsotti, Alessandra Toncelli, R. J. G. Jonker, Jan Harms, D. Buskulic, F. Kawazoe, O. Torre, E. Cuoco, S. Meshkov, Seog Oh, H. Fehrmann, D. Moraru, Gianpietro Cagnoli, D. Yeaton-Massey, F. Vetrano, S. E. Dwyer, J. Pöld, Suvadeep Bose, Z. Márka, Alberto Vecchio, Will M. Farr, A. Dietz, B. Hughey, E. Steinert, M. R. Smith, M. Edwards, M. Pickenpack, A. Rocchi, T. Hong, Maria Ilaria Del Principe, M. Agathos, S. R. Morriss, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), APC - Cosmologie, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique de Rennes (IPR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des matériaux avancés (LMA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux (ARTEMIS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), APC - Gravitation (APC-Gravitation), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL), The LIGO Scientific Collaboration, The Virgo Collaboration, Aasi, J., Abadie, J., Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M., Accadia, T., Acernese, F., Adams, C., Adams, T., Addesso, P., Adhikari, R., Affeldt, C., Agathos, M., Agatsuma, K., Ajith, P., Allen, B., Allocca, A., Amador Ceron, E., Amariutei, D., Anderson, S. B., Anderson, W. G., Arai, K., Araya, M. C., Ast, S., Aston, S. M., Astone, P., Atkinson, D., Aufmuth, P., Aulbert, C., Aylott, B. E., Babak, S., Baker, P., Ballardin, G., Ballmer, S., Bao, Y., Barayoga, J. C. B., Barker, D., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barton, M. A., Bartos, I., Bassiri, R., Bastarrika, M., Basti, A., Batch, J., Bauchrowitz, J., Bauer, T. h. S., Bebronne, M., Beck, D., Behnke, B., Bejger, M., Beker, M. G., Bell, A. S., Bell, C., Belopolski, I., Benacquista, M., Berliner, J. M., Bertolini, A., Betzwieser, J., Beveridge, N., Beyersdorf, P. T., Bhadbade, T., Bilenko, I. A., Billingsley, G., Birch, J., Biswas, R., Bitossi, M., Bizouard, M. A., Black, E., Blackburn, J. K., Blackburn, L., Blair, D., Bland, B., Blom, M., Bock, O., Bodiya, T. P., Bogan, C., Bond, C., Bondarescu, R., Bondu, F., Bonelli, L., Bonnand, R., Bork, R., Born, M., Boschi, V., Bose, S., Bosi, L., Bouhou, B., Braccini, S., Bradaschia, C., Brady, P. R., Braginsky, V. B., Branchesi, M., Brau, J. E., Breyer, J., Briant, T., Bridges, D. O., Brillet, A., Brinkmann, M., Brisson, V., Britzger, M., Brooks, A. F., Brown, D. A., Bulik, T., Bulten, H. J., Buonanno, A., Burguet?castell, J., Buskulic, D., Buy, C., Byer, R. L., Cadonati, L., Cagnoli, G., Calloni, Enrico, Camp, J. B., Campsie, P., Cannon, K., Canuel, B., Cao, J., Capano, C. D., Carbognani, F., Carbone, L., Caride, S., Caudill, S., Cavagli?, M., Cavalier, F., Cavalieri, R., Cella, G., Cepeda, C., Cesarini, E., Chalermsongsak, T., Charlton, P., Chassande Mottin, E., Chen, W., Chen, X., Chen, Y., Chincarini, A., Chiummo, A., Cho, H. S., Chow, J., Christensen, N., Chua, S. S. Y., Chung, C. T. Y., Chung, S., Ciani, G., Clara, F., Clark, D. E., Clark, J. A., Clayton, J. H., Cleva, F., Coccia, E., Cohadon, P. F., Colacino, C. N., Colla, A., Colombini, M., Conte, A., Conte, R., Cook, D., Corbitt, T. R., Cordier, M., Cornish, N., Corsi, A., Costa, C. A., Coughlin, M., Coulon, J. P., Couvares, P., Coward, D. M., Cowart, M., Coyne, D. C., Creighton, J. D. E., Creighton, T. D., Cruise, A. M., Cumming, A., Cunningham, L., Cuoco, E., Cutler, R. M., Dahl, K., Damjanic, M., Danilishin, S. L., D?antonio, S., Danzmann, K., Dattilo, V., Daudert, B., Daveloza, H., Davier, M., Daw, E. J., Dayanga, T., DE ROSA, Rosario, Debra, D., Debreczeni, G., Degallaix, J., Del Pozzo, W., Dent, T., Dergachev, V., Derosa, R., Dhurandhar, S., Di Fiore, L., Di Lieto, A., Di Palma, I., Di Paolo Emilio, M., Di Virgilio, A., D?az, M., Dietz, A., Donovan, F., Dooley, K. L., Doravari, S., Dorsher, S., Drago, M., Drever, R. W. P., Driggers, J. C., Du, Z., Dumas, J. C., Dwyer, S., Eberle, T., Edgar, M., Edwards, M., Effler, A., Ehrens, P., Endr?czi, G., Engel, R., Etzel, T., Evans, K., Evans, M., Evans, T., Factourovich, M., Fafone, V., Fairhurst, S., Farr, B. F., Farr, W. M., Favata, M., Fazi, D., Fehrmann, H., Feldbaum, D., Feroz, F., Ferrante, I., Ferrini, F., Fidecaro, F., Finn, L. S., Fiori, I., Fisher, R. P., Flaminio, R., Foley, S., Forsi, E., Forte, L. A., Fotopoulos, N., Fournier, J. D., Franc, J., Franco, S., Frasca, S., Frasconi, F., Frede, M., Frei, M. A., Frei, Z., Freise, A., Frey, R., Fricke, T. T., Friedrich, D., Fritschel, P., Frolov, V. V., Fujimoto, M. K., Fulda, P. J., Fyffe, M., Gair, J., Galimberti, M., Gammaitoni, L., Garcia, J., Garufi, Fabio, G?sp?r, M. E., Gelencser, G., Gemme, G., Genin, E., Gennai, A., Gergely, L. ?., Ghosh, S., Giaime, J. A., Giampanis, S., Giardina, K. D., Giazotto, A., Gil Casanova, S., Gill, C., Gleason, J., Goetz, E., Gonz?lez, G., Gorodetsky, M. L., Go?ler, S., Gouaty, R., Graef, C., Graff, P. B., Granata, M., Grant, A., Gray, C., Greenhalgh, R. J. S., Gretarsson, A. M., Griffo, C., Grote, H., Grover, K., Grunewald, S., Guidi, G. M., Guido, C., Gupta, R., Gustafson, E. K., Gustafson, R., Hallam, J. M., Hammer, D., Hammond, G., Hanks, J., Hanna, C., Hanson, J., Harms, J., Harry, G. M., Harry, I. W., Harstad, E. D., Hartman, M. T., Haster, C. J., Haughian, K., Hayama, K., Hayau, J. F., Heefner, J., Heidmann, A., Heintze, M. C., Heitmann, H., Hello, P., Hemming, G., Hendry, M. A., Heng, I. S., Heptonstall, A. W., Herrera, V., Heurs, M., Hewitson, M., Hild, S., Hoak, D., Hodge, K. A., Holt, K., Holtrop, M., Hong, T., Hooper, S., Hough, J., Howell, E. J., Hughey, B., Husa, S., Huttner, S. H., Huynh Dinh, T., Ingram, D. R., Inta, R., Isogai, T., Ivanov, A., Izumi, K., Jacobson, M., James, E., Jang, Y. J., Jaranowski, P., Jesse, E., Johnson, W. W., Jones, D. I., Jones, R., Jonker, R. J. G., Ju, L., Kalmus, P., Kalogera, V., Kandhasamy, S., Kang, G., Kanner, J. B., Kasprzack, M., Kasturi, R., Katsavounidis, E., Katzman, W., Kaufer, H., Kaufman, K., Kawabe, K., Kawamura, S., Kawazoe, F., Keitel, D., Kelley, D., Kells, W., Keppel, D. G., Keresztes, Z., Khalaidovski, A., Khalili, F. Y., Khazanov, E. A., Kim, B. K., Kim, C., Kim, H., Kim, K., Kim, N., Kim, Y. M., King, P. J., Kinzel, D. L., Kissel, J. S., Klimenko, S., Kline, J., Kokeyama, K., Kondrashov, V., Koranda, S., Korth, W. Z., Kowalska, I., Kozak, D., Kringel, V., Krishnan, B., Kr?lak, A., Kuehn, G., Kumar, P., Kumar, R., Kurdyumov, R., Kwee, P., Lam, P. K., Landry, M., Langley, A., Lantz, B., Lastzka, N., Lawrie, C., Lazzarini, A., Le Roux, A., Leaci, P., Lee, C. H., Lee, H. K., Lee, H. M., Leong, J. R., Leonor, I., Leroy, N., Letendre, N., Lhuillier, V., Li, J., T. G. F., Li, Lindquist, P. E., Litvine, V., Liu, Y., Liu, Z., Lockerbie, N. A., Lodhia, D., Logue, J., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J., Lubinski, M., L?ck, H., Lundgren, A. P., Macarthur, J., Macdonald, E., Machenschalk, B., Macinnis, M., Macleod, D. M., Mageswaran, M., Mailand, K., Majorana, E., Maksimovic, I., Malvezzi, V., Man, N., Mandel, I., Mandic, V., Mantovani, M., Marchesoni, F., Marion, F., M?rka, S., M?rka, Z., Markosyan, A., Maros, E., Marque, J., Martelli, F., Martin, I. W., Martin, R. M., Marx, J. N., Mason, K., Masserot, A., Matichard, F., Matone, L., Matzner, R. A., Mavalvala, N., Mazzolo, G., Mccarthy, R., Mcclelland, D. E., Mcguire, S. C., Mcintyre, G., Mciver, J., Meadors, G. D., Mehmet, M., Meier, T., Melatos, A., Melissinos, A. C., Mendell, G., Men?ndez, D. F., Mercer, R. A., Meshkov, S., Messenger, C., Meyer, M. S., Miao, H., Michel, C., Milano, L., Miller, J., Minenkov, Y., Mingarelli, C. M. F., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Moe, B., Mohan, M., Mohapatra, S. R. P., Moraru, D., Moreno, G., Morgado, N., Morgia, A., Mori, T., Morriss, S. R., Mosca, S., Mossavi, K., Mours, B., Mow?lowry, C. M., Mueller, C. L., Mueller, G., Mukherjee, S., Mullavey, A., M?ller Ebhardt, H., Munch, J., Murphy, D., Murray, P. G., Mytidis, A., Nash, T., Naticchioni, L., Necula, V., Nelson, J., Neri, I., Newton, G., Nguyen, T., Nishizawa, A., Nitz, A., Nocera, F., Nolting, D., Normandin, M. E., Nuttall, L., Ochsner, E., O?dell, J., Oelker, E., Ogin, G. H., J. J., Oh, S. H., Oh, Oldenberg, R. G., O?reilly, B., O?shaughnessy, R., Osthelder, C., Ott, C. D., Ottaway, D. J., Ottens, R. S., Overmier, H., Owen, B. J., Page, A., Palladino, L., Palomba, C., Pan, Y., Pankow, C., Paoletti, F., Paoletti, R., Papa, M. A., Parisi, M., Pasqualetti, A., Passaquieti, R., Passuello, D., Pedraza, M., Penn, S., Perreca, A., Persichetti, G., Phelps, M., Pichot, M., Pickenpack, M., Piergiovanni, F., Pierro, V., Pihlaja, M., Pinard, L., Pinto, I. M., Pitkin, M., Pletsch, H. J., Plissi, M. V., Poggiani, R., P?ld, J., Postiglione, F., Poux, C., Prato, M., Predoi, V., Prestegard, T., Price, L. R., Prijatelj, M., Principe, M., Privitera, S., Prodi, G. A., Prokhorov, L. G., Puncken, O., Punturo, M., Puppo, P., Quetschke, V., Quitzow James, R., Raab, F. J., Rabeling, D. S., R?cz, I., Radkins, H., Raffai, P., Rakhmanov, M., Ramet, C., Rankins, B., Rapagnani, P., Raymond, V., Re, V., Reed, C. M., Reed, T., Regimbau, T., Reid, S., Reitze, D. H., Ricci, F., Riesen, R., Riles, K., Roberts, M., Robertson, N. A., Robinet, F., Robinson, C., Robinson, E. L., Rocchi, A., Roddy, S., Rodriguez, C., Rodruck, M., Rolland, L., Rollins, J. G., Romano, R., Romie, J. H., Rosi?ska, D., R?ver, C., Rowan, S., R?diger, A., Ruggi, P., Ryan, K., Salemi, F., Sammut, L., Sandberg, V., Sankar, S., Sannibale, V., Santamar?a, L., Santiago Prieto, I., Santostasi, G., Saracco, E., Sassolas, B., Sathyaprakash, B. S., Saulson, P. R., Savage, R. L., Schilling, R., Schnabel, R., Schofield, R. M. S., Schulz, B., Schutz, B. F., Schwinberg, P., Scott, J., Scott, S. M., Seifert, F., Sellers, D., Sentenac, D., Sergeev, A., Shaddock, D. A., Shaltev, M., Shapiro, B., Shawhan, P., Shoemaker, D. H., Sidery, T. L., Siemens, X., Sigg, D., Simakov, D., Singer, A., Singer, L., Sintes, A. M., Skelton, G. R., Slagmolen, B. J. J., Slutsky, J., Smith, J. R., Smith, M. R., Smith, R. J. E., Smith Lefebvre, N. D., Somiya, K., Sorazu, B., Speirits, F. C., Sperandio, L., Stefszky, M., Steinert, E., Steinlechner, J., Steinlechner, S., Steplewski, S., Stochino, A., Stone, R., Strain, K. A., Strigin, S. E., Stroeer, A. S., Sturani, R., Stuver, A. L., Summerscales, T. Z., Sung, M., Susmithan, S., Sutton, P. J., Swinkels, B., Szeifert, G., Tacca, M., Taffarello, L., Talukder, D., Tanner, D. B., Tarabrin, S. P., Taylor, R., ter Braack, A. P. M., Thomas, P., Thorne, K. A., Thorne, K. S., Thrane, E., Th?ring, A., Titsler, C., Tokmakov, K. V., Tomlinson, C., Toncelli, A., Tonelli, M., Torre, O., Torres, C. V., Torrie, C. I., Tournefier, E., Travasso, F., Traylor, G., Tse, M., Ugolini, D., Vahlbruch, H., Vajente, G., van den Brand, J. F. J., Van Den Broeck, C., van der Putten, S., van Veggel, A. A., Vass, S., Vasuth, M., Vaulin, R., Vavoulidis, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venkateswara, K., Verkindt, D., Vetrano, F., Vicer?, A., Villar, A. E., Vinet, J. Y., Vitale, S., Vocca, H., Vorvick, C., Vyatchanin, S. P., Wade, A., Wade, L., Wade, M., Waldman, S. J., Wallace, L., Wan, Y., Wang, M., Wang, X., Wanner, A., Ward, R. L., Was, M., Weinert, M., Weinstein, A. J., Weiss, R., Welborn, T., Wen, L., Wessels, P., West, M., Westphal, T., Wette, K., Whelan, J. T., Whitcomb, S. E., White, D. J., Whiting, B. F., Wiesner, K., Wilkinson, C., Willems, P. A., Williams, L., Williams, R., Willke, B., Wimmer, M., Winkelmann, L., Winkler, W., Wipf, C. C., Wiseman, A. G., Wittel, H., Woan, G., Wooley, R., Worden, J., Yablon, J., Yakushin, I., Yamamoto, H., Yamamoto, K., Yancey, C. C., Yang, H., Yeaton Massey, D., Yoshida, S., Yvert, M., Zadro?ny, A., Zanolin, M., Zendri, J. P., Zhang, F., Zhang, L., Zhao, C., Zotov, N., Zucker, M. E., Zweizig, J., Pinto, Innocenzo, Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), ESPCI ParisTech, Laboratoire d'Annecy de Physique des Particules ( LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), Physique Corpusculaire et Cosmologie - Collège de France ( PCC ), Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Observatoire de Paris-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Physique de Rennes ( IPR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire des matériaux avancés ( LMA ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux ( ARTEMIS ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), APC - Gravitation ( APC-Gravitation ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Max-Planck-Institut-Max-Planck-Institut, Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Centre National de la Recherche Scientifique (CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), and (Astro)-Particles Physics
- Subjects
Gravitational-wave observatory ,Physics and Astronomy (miscellaneous) ,ELECTROMAGNETIC COUNTERPARTS ,MASS-DISTRIBUTION ,BLACK-HOLES ,TRANSIENTS ,INSPIRALS ,COSMOLOGY ,PHYSICS ,SEARCH ,Astrophysics ,Parameter space ,01 natural sciences ,neutron stars ,General Relativity and Quantum Cosmology ,Detection of gravitational wave ,010303 astronomy & astrophysics ,QC ,LIGO Scientific Collaboration ,QB ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Estimation theory ,[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Detector ,Settore FIS/01 - Fisica Sperimentale ,Nuclear and High Energy Physics ,Justice and Strong Institutions ,gravitational waves ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Astrophysics - High Energy Astrophysical Phenomena ,Algorithm ,Gravitation ,[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,SDG 16 - Peace ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,010308 nuclear & particles physics ,Gravitational wave ,Model selection ,SDG 16 - Peace, Justice and Strong Institutions ,[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,black holes ,LIGO ,cosmology: observations ,[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] - Abstract
Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a "blind injection" where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron star and black hole parameter space over the individual mass range 1 Msun - 25 Msun and the full range of spin parameters. The cases reported in this study provide a snap-shot of the status of parameter estimation in preparation for the operation of advanced detectors., Comment: 23 pages, 18 figures. LIGO Document P1200021. See the announcement for this paper on ligo.org at: http://www.ligo.org/science/Publication-S6PE/index.php. For a repository of data used in the publication, go to: https://dcc.ligo.org/LIGO-P1200021/public; Modifications thanks to referee reports
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.