1. Apprentissage d'automates et de transducteurs: une approche catégorique
- Author
-
Colcombet, Thomas, Petrişan, Daniela, Stabile, Riccardo, Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS), Dipartimento de Matematica [Milano], and Università degli Studi di Milano [Milano] (UNIMI)
- Subjects
transducer ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES ,learning ,[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL] ,automata ,category ,[INFO]Computer Science [cs] ,Nonlinear Sciences::Cellular Automata and Lattice Gases ,Computer Science::Formal Languages and Automata Theory - Abstract
International audience; In this paper, we present a categorical approach to learning automata over words, in the sense of the L∗-algorithm of Angluin. This yields a new generic L∗-like algorithm which can be instantiated for learning deterministic automata, automata weighted over fields, as well as subsequential transducers. The generic nature of our algorithm is obtained by adopting an approach in which automata are simply functors from a particular category representing words to a “computation category”. We establish that the sufficient properties for yielding the existence of minimal automata (that were disclosed in a previous paper), in combination with some additional hypotheses relative to termination, ensure the correctness of our generic algorithm.
- Published
- 2021
- Full Text
- View/download PDF