Back to Search
Start Over
Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation
- Source :
- Anal. PDE 11, no. 3 (2018), 775-799
- Publication Year :
- 2018
- Publisher :
- Mathematical Sciences Publishers, 2018.
-
Abstract
- We prove a reducibility result for a quantum harmonic oscillator in arbitrary dimensions with arbitrary frequencies perturbed by a linear operator which is a polynomial of degree two in $x_j$, $-i \partial_j$ with coefficients which depend quasiperiodically on time.<br />fixed some misprints
- Subjects :
- FOS: Physical sciences
35J10
37K55
Perturbation (astronomy)
01 natural sciences
37K55, 35J10
Mathematics - Analysis of PDEs
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
Settore MAT/05 - Analisi Matematica
0103 physical sciences
FOS: Mathematics
0101 mathematics
Time complexity
Growth of Sobolev norms
Harmonic oscillators
Reducibility
Analysis
Numerical Analysis
Applied Mathematics
Mathematical Physics
Mathematics
010102 general mathematics
Mathematical analysis
Mathematical Physics (math-ph)
reducibility
harmonic oscillators
Linear map
Quantum harmonic oscillator
growth of Sobolev norms
010307 mathematical physics
Analysis of PDEs (math.AP)
Subjects
Details
- ISSN :
- 1948206X and 21575045
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Analysis & PDE
- Accession number :
- edsair.doi.dedup.....10771dd08126e9a0fb439c47651b2a7b
- Full Text :
- https://doi.org/10.2140/apde.2018.11.775