25 results on '"Dina Tobia"'
Search Results
2. Hollow microspheres formed by nanograins of Cr1.8Ti0.2O3+z synthesized by ultrasonic spray pyrolysis for acetone detection
- Author
-
Francisco J. Carol-Coronel, Dina Tobia, Enio Lima Jr., Rodolfo D. Sánchez, and Martín E. Saleta
- Subjects
Mechanics of Materials ,Mechanical Engineering ,General Materials Science ,Condensed Matter Physics - Published
- 2023
- Full Text
- View/download PDF
3. Dependence of the composition, morphology and magnetic properties with the water and air exposure during the Fe1-yO/Fe3O4 core–shell nanoparticles synthesis
- Author
-
Elin L. Winkler, Dina Tobia, Javier Hernán Lohr, M. V. Gerbaldo, M.S. Moreno, Gerardo F. Goya, M. Vasquez Mansilla, Roberto D. Zysler, Enio Lima, Agencia Nacional de Promoción Científica y Tecnológica (Argentina), Universidad Nacional de Cuyo, European Commission, Agencia Estatal de Investigación (España), and Ministerio de Ciencia, Innovación y Universidades (España)
- Subjects
Materials science ,Iron oxide ,Bioengineering ,02 engineering and technology ,engineering.material ,010402 general chemistry ,01 natural sciences ,Crystallinity ,chemistry.chemical_compound ,General Materials Science ,Wüstite ,Inert gas ,Thermal decomposition ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Chemical engineering ,chemistry ,Modeling and Simulation ,Magnet ,engineering ,Magnetic nanoparticles ,Ferrite (magnet) ,0210 nano-technology - Abstract
The thermal decomposition of organometallic precursors in the presence of surfactants and a long-chain alcohol is a valuable method to synthesize magnetic nanoparticles (MNPs) because it provides good control of the final morphology and crystallinity of the magnetic material. These parameters, and consequently the magnetic properties, depend on several details of the experimental procedure of chemical synthesis. We have studied the role of the pre-decomposition step, heating the system to 373–393 K in inert gas flux, on the final composition and morphology of the system. By adding this intermediate step, we were able to produce MNPs with a Fe1-yO/Fe3O4 core–shell structure and sizes of 20–25 nm. When the same synthesis protocol was used skipping the pre-decomposition stage, monophasic MNPs of 11 nm with ferrite structure were obtained. These differences in the composition have a major effect on the resulting magnetic properties of MNPs, and are related to some by-reactions in the synthesis solution during the preparation procedure., The authors acknowledge the financial support of the Argentinian Agencia Nacional de Promoción de Ciencia y Tecnológica (ANPCyT) through the project nos. PICT-2016–0288 and PICT-2018–02565. The authors also thank the Universidad Nacional de Cuyo (UNCuyo) by the financial support through the project nos. 06/C527 and 06/C528. The authors also acknowledge the support of the EU commission under the grant H2020-MSCA-RISE-2016, SPICOLOST project no. 734187. GFG thanks the Spanish Ministerio de Ciencia, Innovación y Universidades by the partial financial support through project PID2019-106947RB-C21.
- Published
- 2021
- Full Text
- View/download PDF
4. Reactive Oxygen Species in Emulated Martian Conditions and Their Effect on the Viability of the Unicellular Alga
- Author
-
Carolina, Bagnato, Marcela S, Nadal, Dina, Tobia, Mariana, Raineri, Marcelo, Vasquez Mansilla, Elin L, Winkler, Roberto D, Zysler, and Enio, Lima
- Subjects
Extraterrestrial Environment ,Ultraviolet Rays ,Mars ,Hydrogen Peroxide ,Reactive Oxygen Species ,Scenedesmus - Abstract
Formation of oxygen-based free radicals from photochemical decomposition of hydrogen peroxide (H
- Published
- 2021
5. Magnetic Hydroxyapatite for Magnetic Hyperthermia and Sensitive to Ionizing Radiation
- Author
-
Nahuel Nuñez, Mariana Raineri, Horacio E. Troiani, Dina Tobia, Roberto D. Zysler, Enio Lima, and Elin Lilian Winkler
- Subjects
History ,Polymers and Plastics ,Business and International Management ,Industrial and Manufacturing Engineering - Published
- 2021
- Full Text
- View/download PDF
6. Preface
- Author
-
Pablo Bolcatto, Eduardo Jagla, Gladys Nieva, César Proetto, Dina Tobia, and Cecilia Ventura
- Published
- 2019
- Full Text
- View/download PDF
7. Cation occupancy in bimagnetic CoO-core/Co1−xZnxFe2O4-shell (x = 0-1) nanoparticles
- Author
-
Santiago J. A. Figueroa, Roberto D. Zysler, Gabriel Carlos Lavorato, Junior C. Mauricio, Enio Lima, Horacio Esteban Troiani, Dina Tobia, M.E. Saleta, E.L. Winkler, Elisa Baggio-Saitovitch, and Javier Hernán Lohr
- Subjects
Materials science ,Mechanical Engineering ,Spinel ,Metals and Alloys ,Shell (structure) ,Nanoparticle ,02 engineering and technology ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic units ,0104 chemical sciences ,Core (optical fiber) ,Crystallography ,Octahedron ,Mechanics of Materials ,Mössbauer spectroscopy ,Materials Chemistry ,engineering ,Absorption (chemistry) ,0210 nano-technology - Abstract
In this work, we studied the cation occupancy of bimagnetic CoO/Co1−xZnxFe2O4 core/shell nanoparticles by means of X-ray absorption and Mossbauer spectroscopies, which provide element-sensitive information at the atomic scale. Our results indicate that, although the spinel ferrite forms a multi-grain shell, the Zn cations occupy solely tetrahedral sites, while the Co cations are mostly in the octahedral site. On the other hand, the Fe cations are distributed in both tetrahedral and octahedral sites for all concentrations. Also the results provide evidence for a Zn-deficient spinel with an excess of Co cations in the shell, whose origin is further rationalized in terms of the two-step synthesis process. In overall, this work gives a description of the cation occupancy in the core/shell nanoparticles and can serve as a guide to the interpretation of the magnetic properties of complex bimagnetic systems for future technological applications.
- Published
- 2021
- Full Text
- View/download PDF
8. Reply to 'comment on 'Free-Radical Formation by the Peroxidase-Like Catalytic Activity of MFe2O4 (M = Fe, Ni, and Mn) Nanoparticles''
- Author
-
H. E. Troiani, Elin L. Winkler, Marcelo Vasquez Mansilla, Alfonso Toro Córdova, Mariana Raineri, Enio Lima, Gerardo F. Goya, Teobaldo E. Torres, Roberto D. Zysler, Luis M. Rodríguez, Mary Luz Mojica Pisciotti, Marcela S. Nadal, C.A. Ramos, Ana Carolina Moreno Maldonado, Emilio De Biasi, and Dina Tobia
- Subjects
Radical ,Físico-Química, Ciencia de los Polímeros, Electroquímica ,PEROXIDASE-LIKE REACTION ,Nanoparticle ,02 engineering and technology ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Catalysis ,law.invention ,purl.org/becyt/ford/1 [https] ,Oxidation state ,law ,purl.org/becyt/ford/1.4 [https] ,Physical and Theoretical Chemistry ,Electron paramagnetic resonance ,Free Radical Formation ,FREE RADICALS ,Chemistry ,Ciencias Químicas ,021001 nanoscience & nanotechnology ,FERRITES NANOPARTICLES ,humanities ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,Magnetic nanoparticles ,Ferrite (magnet) ,EPR ,0210 nano-technology ,CIENCIAS NATURALES Y EXACTAS - Abstract
Recently we have reported a qualitative, quantitative and reproducible study of the generation of free radicals as a result of the surface catalytic activity of Fe3O4, Fe2O3, MnFe2O4 and NiFe2O4 nanoparticles as a function of the Fe2+/Fe3+ oxidation state under different pHs (4.8 and 7.4) and temperatures (25 ºC and 40 ºC) condition. These results were contrasted with those obtained from the in vitro experiments in BV2 cells incubated with dextran-coated magneticnanoparticles. Based on these results we affirm that our ferrite magnetic nanoparticles catalyze the formation of free radicals and the decomposition of H2O2 by a ?peroxidase-like? activity. In a comment on this article, Meunier and A. Robert question two points: First they assert that the measured free radicals are not produced by a peroxidase reaction. Also, based on a different normalization method from those reported in our work, they also discuss that the reaction is not catalytic. Here we reply the arguments of the authors about these two points. Fil: Moreno Maldonado, Ana Carolina. Instituto de Nanociencia de Aragón; ; España Fil: Winkler, Elin Lilian. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Raineri Andersen, Mariana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Toro Cordova, Alfonso. Universidad de Zaragoza; España Fil: Rodriguez, Luis Miguel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Troiani, Horacio Esteban. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Mojica Pisciotti, Mary Luz. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vasquez Mansilla, Marcelo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Tobia, Dina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Nadal, Marcela. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Torres Molina, Teobaldo Enrique. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: de Biasi, Emilio. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Ramos, Carlos Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Goya, Gerardo Fabian. Universidad de Zaragoza; España Fil: Zysler, Roberto Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Lima, Enio Junior. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina
- Published
- 2019
- Full Text
- View/download PDF
9. Free-Radical Formation by the Peroxidase-Like Catalytic Activity of MFe2O4 (M = Fe, Ni, and Mn) Nanoparticles
- Author
-
Marcelo Vasquez Mansilla, Dina Tobia, Alfonso Toro Córdova, Enio Lima, Emilio De Biasi, Ana Carolina Moreno Maldonado, Marcela S. Nadal, Gerardo F. Goya, Luis M. Rodríguez, Roberto D. Zysler, C.A. Ramos, Teobaldo E. Torres, Mary Luz Mojica Pisciotti, Mariana Raineri, H. E. Troiani, and Elin L. Winkler
- Subjects
Nanoparticle ,02 engineering and technology ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Catalysis ,purl.org/becyt/ford/1 [https] ,chemistry.chemical_compound ,Peroxidase like ,Physical and Theoretical Chemistry ,Free Radical Formation ,FREE RADICALS ,Magnetite ,chemistry.chemical_classification ,Reactive oxygen species ,FENTON REACTION ,ROS ,purl.org/becyt/ford/1.3 [https] ,equipment and supplies ,021001 nanoscience & nanotechnology ,3. Good health ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,chemistry ,Ferrite (magnet) ,Magnetic nanoparticles ,MAGNETITE ,0210 nano-technology ,human activities - Abstract
Ferrite magnetic nanoparticles (MNPs) have peroxidase-like activity and thus catalyze the decomposition of H2O2-producing reactive oxygen species (ROS). Increasingly important applications of these ferrite MNPs in biology and medicine require that their morphological, physicochemical, and magnetic properties need to be strictly controlled. Usually, the tuning of their magnetic properties is achieved by the replacement of Fe by other 3d metals, such as Mn or Ni. Here, we studied the catalytic activity of ferrite MNPs (MFe2O4, M = Fe2+/Fe3+, Ni, and Mn) with the mean diameter ranging from 10 to 12 nm. Peroxidase-like activity was studied by electron paramagnetic resonance (EPR) using the spin-trap 5,5-dimethyl-1-pyrroline N-oxide at different pHs (4.8 and 7.4) and temperatures (25 and 40 °C). We identified an enhanced amount of hydroxyl (•OH) and perhydroxyl (•OOH) radicals for all samples, compared to a blank solution. Quantitative studies show that [•OH] is the dominant radical formed for Fe3O4, which is strongly reduced with the concomitant oxidation of Fe2+ or its substitution (Ni or Mn). A comparative analysis of the EPR data against in vitro production of ROS in microglial BV2 cell culture provided additional insights regarding the catalytic activity of ferrite MNPs, which should be considered if biomedical uses are intended. Our results contribute to a better understanding of the role played by different divalent ions in the catalytic activity of ferrite nanoparticles, which is very important because of their use in biomedical applications. Fil: Moreno Maldonado, Ana Carolina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Winkler, Elin Lilian. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Raineri Andersen, Mariana. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina Fil: Toro Córdova, Alfonso. Universidad de Zaragoza; España Fil: Rodriguez, Luis Miguel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina Fil: Troiani, Horacio Esteban. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Mojica Pisciotti, Mary Luz. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina Fil: Vasquez Mansilla, Marcelo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina Fil: Tobia, Dina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina Fil: Nadal, Marcela. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Torres Molina, Teobaldo Enrique. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: de Biasi, Emilio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina Fil: Ramos, Carlos A.. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina Fil: Goya, Gerardo Fabian. Universidad de Zaragoza; España Fil: Zysler, Roberto Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina Fil: Lima, Enio Junior. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
- Published
- 2019
- Full Text
- View/download PDF
10. The role of magnetic excitations in magnetoresistance and Hall effect of slightly TM-substituted BaFe2As2 compounds (TM = Mn, Cu, Ni)
- Author
-
Ricardo R. Urbano, M. M. Piva, J. P. Peña, Ted Grant, Zachary Fisk, Priscila Rosa, P. G. Pagliuso, Dina Tobia, Cris Adriano, C. B. R. Jesus, Paulo Pureur, G. G. Lesseux, and T. M. Garitezi
- Subjects
FE-BASED PNICTIDES ,Materials science ,Magnetoresistance ,Ciencias Físicas ,FOS: Physical sciences ,Energy Engineering and Power Technology ,02 engineering and technology ,01 natural sciences ,Superconductivity (cond-mat.supr-con) ,BA-122 SYSTEM ,Paramagnetism ,Tetragonal crystal system ,Hall effect ,Electrical resistivity and conductivity ,Phase (matter) ,0103 physical sciences ,MAGNETORESISTANCE ,Spin density wave ,ANOMALOUS HALL EFFECT ,Electrical and Electronic Engineering ,010306 general physics ,Condensed matter physics ,Condensed Matter - Superconductivity ,Transition temperature ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Astronomía ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology ,CIENCIAS NATURALES Y EXACTAS - Abstract
We report on electrical resistivity, magnetoresistance (MR) and Hall effect measurements in four non-superconducting BaFe2−xTMxAs2 (TM = Mn, Cu and Ni) single crystals with small values of the chemical substitution x. The spin density wave (SDW) ordering that occurs in these systems at temperatures T ∼ (120–140) K, in close vicinity to a tetragonal/orthorhombic transition, produces significant modifications in their magneto-transport properties. While in the magnetically ordered phase the MR is positive and its magnitude increases with decreasing temperatures, in the paramagnetic regime the MR becomes vanishingly small. Above the spin density wave transition temperature (TSDW) the Hall coefficient RH is negative, small and weakly temperature dependent, but a remarkable change of slope occurs in the RH versus T curves at T=TSDW. The Hall coefficient amplitude, while remaining negative, increases steadily and significantly as the temperature is decreased below TSDW and down to T= 20 K. The qualitative behavior of both MR and Hall coefficient is weakly dependent on the chemical substitution in the studied limit. The experiments provide strong evidence that scattering of charge carriers by magnetic excitations has to be taken into account to explain the behavior of the resistivity, magnetoresistance and Hall effect in the ordered phase of the studied compounds. Effects of multiple band conduction also must be considered for a complete interpretation of the results. Fil: Peña, J. P.. Universidade Federal do Rio Grande do Sul; Brasil Fil: Piva, M. M.. Universidade Estadual de Campinas; Brasil Fil: Jesus, C. B. R.. Universidade Estadual de Campinas; Brasil Fil: Lesseux, G. G.. Universidade Estadual de Campinas; Brasil Fil: Garitezi, T. M.. Universidade Estadual de Campinas; Brasil Fil: Tobia, Dina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Estadual de Campinas; Brasil Fil: Rosa, P. F. S.. Universidade Estadual de Campinas; Brasil. University of California at Irvine; Estados Unidos Fil: Grant, T.. University of California at Irvine; Estados Unidos Fil: Fisk, Z.. University of California at Irvine; Estados Unidos Fil: Adriano, C.. Universidade Estadual de Campinas; Brasil Fil: Urbano, R. R.. Universidade Estadual de Campinas; Brasil Fil: Pagliuso, P. G.. Universidade Estadual de Campinas; Brasil Fil: Pureur, P.. Universidade Federal do Rio Grande do Sul; Brasil
- Published
- 2016
- Full Text
- View/download PDF
11. Origin of the large dispersion of magnetic properties in nanostructured oxides: FexO/Fe3O4 nanoparticles as a case study
- Author
-
I. V. Golosovsky, Alejandro G. Roca, Alberto López-Ortega, Marta Estrader, Isabelle Mirebeau, Elin L. Winkler, Arsen Gukasov, Lluís López-Conesa, O. L. Makarova, Maria Dolors Baró, Roberto D. Zysler, M. Vasilakaki, German Salazar-Alvarez, Francesca Peiró, Lennart Bergström, José D. Ardisson, Waldemar A. A. Macedo, A. Morphis, Kalliopi N. Trohidou, Dina Tobia, Sònia Estradé, Josep Nogués, Fundação de Amparo à Pesquisa do Estado de São Paulo Minas Gerais, Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), Secretaría de Ciencia y Técnica de la Nación (Argentina), Swedish Research Council, Knut and Alice Wallenberg Foundation, Institución Catalana de Investigación y Estudios Avanzados, Ministerio de Ciencia e Innovación (España), Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), Russian Foundation for Basic Research, Russian Government, European Commission, and Generalitat de Catalunya
- Subjects
Nanostructure ,Materials science ,Exchange Bias ,Ciencias Físicas ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,purl.org/becyt/ford/1 [https] ,Magnetic properties ,Antiferromagnetism ,General Materials Science ,Òxids ,Nanoscopic scale ,Bimagnetic Nanoparticles ,Nanopartícules ,Propietats magnètiques ,Oxides ,purl.org/becyt/ford/1.3 [https] ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Characterization (materials science) ,Astronomía ,Nanomagnetism ,Nanoparticles ,Core/Shell ,0210 nano-technology ,Dispersion (chemistry) ,Fe3o4 nanoparticles ,CIENCIAS NATURALES Y EXACTAS ,Stoichiometry ,Nanostructured oxides - Abstract
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.-- et al., The intimate relationship between stoichiometry and physicochemical properties in transition-metal oxides makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated. In this regard, in the FexO/Fe3O4 system a largely unexplained broad dispersion of magnetic properties has been observed. Here we show, thanks to a comprehensive multi-technique approach, a clear correlation between the magneto-structural properties in large (45 nm) and small (9 nm) FexO/Fe3O4 core/shell nanoparticles that can explain the spread of magnetic behaviors. The results reveal that while the FexO core in the large nanoparticles is antiferromagnetic and has bulk-like stoichiometry and unit-cell parameters, the FexO core in the small particles is highly non-stoichiometric and strained, displaying no significant antiferromagnetism. These results highlight the importance of ample characterization to fully understand the properties of nanostructured metal oxides., This work was supported by the 2014-SGR-1015 and 2009-SGR-35 projects of the Generalitat de Catalunya, by the MAT2010-20616-C02, MAT2011-27380-C02-01, MAT2010-16407, MAT2013-48628-R and CSD2009-00013 projects of the Spanish Ministerio de Economía y Competitividad (MINECO), the ONDA and COEFNANO projects (no. FP7-PEOPLE-2009-IRSES-247518 and no. FP7-PEOPLE-2012-IRSES-318901) of the European Union, the Russian grants RFBR 13-02-00121, 13-02-12429 and RG 14.B25.31.0025, the Brazilian grants CNPq-304368/2010-5 and FAPEMIG-PPM 00319-11, the Argentine grants PIP 1333 (CONICET) and SECTyP 06/C404 (Univ. Nac. de Cuyo) and the Swedish Research Council (VR). Research at NCSR “D” was supported by the HSF-EU program ARISTEIA, grant COMANA/22. GSA was partially supported by the Knut and Alice Wallenberg Foundation (Project: 3DEM-NATUR). I.V.G. thanks the Generalitat de Catalunya for his sabbatical fellowship (2010 PIV 00096). M.D.B. was partially supported by an ICREA Academia award. M.E. acknowledges the Spanish Ministry of Science and Innovation through the Juan de la Cierva Program. A. G. Roca would like to thank Generalitat de Catalunya for financial support under the Beatriu de Pinós fellowship program (2011 BP_B 00209). ICN2 acknowledges support from the Severo Ochoa Program (MINECO, grant SEV-2013-0295).
- Published
- 2015
12. Superconducting Properties in Arrays of Nanostructured β-Gallium
- Author
-
Fanny Béron, O. F. de Lima, P. G. Pagliuso, Priscila Rosa, K.O. Moura, Kleber R. Pirota, Dina Tobia, and C. B. R. Jesus
- Subjects
Materials science ,Field (physics) ,Ciencias Físicas ,Nanowire ,chemistry.chemical_element ,lcsh:Medicine ,01 natural sciences ,Article ,010305 fluids & plasmas ,purl.org/becyt/ford/1 [https] ,Magnetization ,Condensed Matter::Superconductivity ,0103 physical sciences ,Phenomenological model ,Gallium ,010306 general physics ,lcsh:Science ,Superconductivity ,Multidisciplinary ,Condensed matter physics ,lcsh:R ,purl.org/becyt/ford/1.3 [https] ,METALLIC-FLUX NUCLEATION ,Vortex ,Astronomía ,chemistry ,SUPERCONDUCTING NANOWIRES ,lcsh:Q ,Cooper pair ,CIENCIAS NATURALES Y EXACTAS ,BETA-Ga NANOSTRUCTURES - Abstract
Samples of nanostructured β-Ga wires were synthesized by a novel method of metallic-flux nanonucleation. Several superconducting properties were observed, revealing the stabilization of a weak-coupling type-II-like superconductor ($${T}_{c}$$ T c $$\approx $$ ≈ 6.2 K) with a Ginzburg-Landau parameter $${\kappa }_{GL}$$ κ G L = 1.18. This contrasts the type-I superconductivity observed for the majority of Ga phases, including small spheres of β-Ga with diameters near 15 μm. Remarkably, our magnetization curves reveal a crossover field $${H}_{D}$$ H D , where we propose that the Abrikosov vortices are exactly touching their neighbors inside the Ga nanowires. A phenomenological model is proposed to explain this result by assuming that only a single row of vortices is allowed inside a nanowire under perpendicular applied field, with an appreciable depletion of Cooper pair density at the nanowire edges. These results are expected to shed light on the growing area of superconductivity in nanostructured materials.
- Published
- 2017
13. Aging effect on vanadium oxide hybrid nanotubes
- Author
-
Carlos Alberto López, M.E. Saleta, Rodolfo Sánchez, M. Granada, Dina Tobia, Roberto M. Torresi, Santiago Jose Alejandro Figueroa, and Marcos Malta
- Subjects
Political science ,0103 physical sciences ,General Materials Science ,02 engineering and technology ,Aging effect ,Vanadium Compounds ,021001 nanoscience & nanotechnology ,010306 general physics ,0210 nano-technology ,Condensed Matter Physics ,01 natural sciences ,Humanities - Abstract
Fil: Saleta, Martin Eduardo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comision Nacional de Energia Atomica. Gerencia del Area de Energia Nuclear. Instituto Balseiro; Argentina
- Published
- 2019
- Full Text
- View/download PDF
14. Síntese e caracterização de nanofios do composto férmion pesado CeIn3
- Author
-
Dina Tobia, K.O. Moura, Pascoal G. Pagliuso, Kleber R. Pirota, C. B. R. Jesus, and Caique Conde Rodrigues
- Published
- 2016
- Full Text
- View/download PDF
15. Experimental study of Bernoulli’s equation with losses
- Author
-
M.E. Saleta, Salvador Gil, and Dina Tobia
- Subjects
Physics ,business.product_category ,Generalization ,Mathematical analysis ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,General Physics and Astronomy ,Expression (mathematics) ,Flow measurement ,Bernoulli's principle ,Simple (abstract algebra) ,Cylinder ,business ,Energy (signal processing) ,Digital camera - Abstract
We present a simple and inexpensive experiment to study the drainage of a cylindrical vessel. The experiment consists of a transparent cylinder and a webcam or a digital camera connected to a computer. The model proposed to explain the results makes use of Bernoulli’s equation for real flows including energy losses. The experimental results are well explained by the model, which is a generalization of Torricelli’s expression.
- Published
- 2005
- Full Text
- View/download PDF
16. Experimental study of the Neumann and Dirichlet boundary conditions in two-dimensional electrostatic problems
- Author
-
Dina Tobia, M.E. Saleta, and Salvador Gil
- Subjects
Physics ,symbols.namesake ,Dirichlet boundary condition ,Neumann–Dirichlet method ,Neumann boundary condition ,symbols ,General Physics and Astronomy ,Boundary conformal field theory ,Applied mathematics ,Cauchy boundary condition ,Mixed boundary condition ,Boundary value problem ,Robin boundary condition - Abstract
We present the results of an experimental study of the implications of the Neumann and Dirichlet boundary conditions on the solution of two-dimensional electrostatic problems. The experimental setup is simple and low cost. The experimental results are compared with theoretical expectations using a spreadsheet program to solve Laplace’s equation with the appropriate boundary conditions. Excellent agreement is found between the experimental results and the calculations. The simplicity of the experiment and of the theoretical interpretation makes this experiment accessible to beginning students.
- Published
- 2002
- Full Text
- View/download PDF
17. Sowing crystals: crystal growth activities in Bariloche, Argentina
- Author
-
Patricia Mateos, Jordana Dorfman, Mauricio Damián Arce, Dina Tobia, Adriana Serquis, Virginia Tognoli, M.E. Saleta, and Morena Robles
- Subjects
Inorganic Chemistry ,Materials science ,Agronomy ,Structural Biology ,Sowing ,General Materials Science ,Crystal growth ,Physical and Theoretical Chemistry ,Condensed Matter Physics ,Biochemistry - Published
- 2017
- Full Text
- View/download PDF
18. Temperature evolution of the effective magnetic anisotropy in the MnCr₂O₄ spinel
- Author
-
Dina, Tobia, Julián, Milano, María Teresa, Causa, and Elin L, Winkler
- Abstract
In this work, we present a study of the low temperature magnetic phases of polycrystalline MnCr2O4 spinel through dc magnetization and ferromagnetic resonance spectroscopy (FMR). Through these experiments, we determined the main characteristic temperatures: T(C) ∼ 41 K and T(H) ∼ 18 K corresponding, respectively, to the ferrimagnetic order and to the low temperature helicoidal transitions. The temperature evolution of the system is described by a phenomenological approach that considers the different terms that contribute to the free energy density. Below the Curie temperature, the FMR spectra were modeled by a cubic magnetocrystalline anisotropy to the second order, with K1 and K2 anisotropy constants that define the easy magnetization axis along the1 1 0direction. At lower temperatures, the formation of a helicoidal phase was considered by including uniaxial anisotropy axis along the [11¯0] propagation direction of the spiral arrange, with a Ku anisotropy constant. The values obtained from the fittings at 5 K are K1 = -2.3 × 10(4) erg cm(-3), K2 = 6.4 × 10(4) erg cm(-3) and Ku = 7.5 × 10(4) erg cm(-3).
- Published
- 2014
19. Determination of Gd concentration profile in UO2-Gd2O3 fuel pellets
- Author
-
Alejandro Ricardo Butera, F. Kaufmann, Luca Bianchi, Rodolfo Kempf, Elin L. Winkler, Dina Tobia, and Julian Milano
- Subjects
Electron paramagnetic resonance spectroscopy ,Nuclear and High Energy Physics ,Materials science ,Ciencias Físicas ,Analytical chemistry ,Pellets ,FOS: Physical sciences ,Ion ,law.invention ,Matrix (chemical analysis) ,FUEL PELLETS ,law ,General Materials Science ,Nuclear Experiment (nucl-ex) ,Electron paramagnetic resonance ,Nuclear Experiment ,Condensed Matter - Materials Science ,Nuclear fuel ,Materials Science (cond-mat.mtrl-sci) ,ELECTRON PARAMANGETIC RESONANCE ,Astronomía ,Nuclear Energy and Engineering ,Reference sample ,Gd CONCENTRATION PROFILE ,UO2-Gd2O3 ,Concentration gradient ,CIENCIAS NATURALES Y EXACTAS - Abstract
A transversal mapping of the Gd concentration was measured in UO2-Gd2O3 nuclear fuel pellets by electron paramagnetic resonance spectroscopy (EPR). The quantification was made from the comparison with a Gd2O3 reference sample. The nominal concentration in the pellets is UO2: 7.5 % Gd2O3. A concentration gradient was found, which indicates that the Gd2O3 amount diminishes towards the edges of the pellets. The concentration varies from (9.3 +/- 0.5)% in the center to (5.8 +/- 0.3)% in one of the edges. The method was found to be particularly suitable for the precise mapping of the distribution of Gd3+ ions in the UO2 matrix., 10 pages, 5 figures, 2 tables. Submitted to Journal of Nuclear Materials
- Published
- 2014
20. Temperature evolution of the effective magnetic anisotropy in the MnCr$_2$O$_4$ spinel
- Author
-
M.T. Causa, Dina Tobia, Julian Milano, and Elin L. Winkler
- Subjects
Condensed Matter - Materials Science ,Materials science ,Condensed matter physics ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Condensed Matter Physics ,Magnetocrystalline anisotropy ,Ferromagnetic resonance ,Magnetic anisotropy ,Magnetization ,Ferrimagnetism ,Curie temperature ,General Materials Science ,Anisotropy ,Spiral - Abstract
In this work we present a study of the low temperature magnetic phases of polycrystalline MnCr$_2$O$_4$ spinel through dc magnetization and ferromagnetic resonance spectroscopy (FMR). Through these experiments we determined the main characteristic temperatures: T$_C$ $\sim$41 K and T$_H$ $\sim$18 K corresponding, respectively, to the ferrimagnetic order and to the low temperature helicoidal transitions. The temperature evolution of the system is described by a phenomenological approach that considers the different terms that contribute to the free energy density. Below the Curie temperature the FMR spectra were modeled by a cubic magnetocrystalline anisotropy to the second order, with $K_1$ and $K_2$ anisotropy constants that define the easy magnetization axis along the direction. At lower temperatures, the formation of a helicoidal phase was considered by including uniaxial anisotropy axis along the [1-10] propagation direction of the spiral arrange, with a $K_u$ anisotropy constant. The values obtained from the fittings at 5 K are $K_1$=-2.3x10$^4$ erg/cm$^3$, $K^2$=6.4x10$^4$ erg/cm$^3$ and $K_u$=7.5x10$^4$ erg/cm$^3$., 21 pages, 6 figures
- Published
- 2014
- Full Text
- View/download PDF
21. Size-Dependent passivation shell and magnetic properties in antiferromagnetic/ferrimagnetic core/shell MnO nanoparticles
- Author
-
Dina Tobia, Jordi Arbiol, German Salazar-Alvarez, Elin L. Winkler, Roberto D. Zysler, I. V. Golosovsky, Miguel Angel González, Santiago Suriñach, Sònia Estradé, Alberto López-Ortega, Francesca Peiró, Jordi Sort, Marta Estrader, Josep Nogués, Maria Dolors Baró, Ministerio de Ciencia e Innovación (España), Generalitat de Catalunya, CSIC-ICN Centro de Investigación en Nanociencia y Nanotecnología (CIN2), European Commission, Russian Foundation for Basic Research, Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), and Institución Catalana de Investigación y Estudios Avanzados
- Subjects
Magnetic domain ,Passivation ,Magnetism ,Mineralogy ,02 engineering and technology ,01 natural sciences ,Biochemistry ,Catalysis ,Colloid and Surface Chemistry ,Ferrimagnetism ,0103 physical sciences ,Magnetic properties ,Antiferromagnetism ,010306 general physics ,Condensed matter physics ,Magnetic moment ,Nanopartícules ,Chemistry ,Propietats magnètiques ,General Chemistry ,021001 nanoscience & nanotechnology ,Magnetic anisotropy ,Nanoparticles ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology ,Néel temperature - Abstract
10 páginas, 13 figuras, 3 tablas.-- et al., The magnetic properties of bimagnetic core/shell nanoparticles consisting of an antiferromagnetic MnO core and a ferrimagnetic passivation shell have been investigated. It is found that the phase of the passivation shell (γ-Mn2O3 or Mn3O4) depends on the size of the nanoparticles. Structural and magnetic characterizations concur that while the smallest nanoparticles have a predominantly γ-Mn2O3 shell, larger ones have increasing amounts of Mn3O4. A considerable enhancement of the Néel temperature, TN, and the magnetic anisotropy of the MnO core for decreasing core sizes has been observed. The size reduction also leads to other phenomena such as persistent magnetic moment in MnO up to high temperatures and an unusual temperature behavior of the magnetic domains., The work was supported by Spanish MICINN grants (Nos. MAT2007-66309-C02 and CSD2006-00012 Consolider-Ingenio 2010), the Catalan DGR (No. 2009-SGR-1292), the Institut Catala de Nanotecnologia, the European Union through the ONDA project (No. FP7-PEOPLE-2009-IRSES-247518), the Russian Foundation for Basic Researches (Grants N07-02-00608, N10-02-00576), CONICET Argentina PIP 5250/03, and UNC No. 882/07. M.D.B. was partially supported by an ICREA ACADEMIA award. A.L.-O. acknowledges his FPI fellowship from the Spanish MICINN.
- Published
- 2010
22. Size effects in bimagnetic CoO/CoFe2O4core/shell nanoparticles
- Author
-
Dina Tobia, Roberto D. Zysler, Horacio Esteban Troiani, Dino Fiorani, Elin L. Winkler, Gabriel Carlos Lavorato, and Enio Lima
- Subjects
Materials science ,Condensed matter physics ,Mechanical Engineering ,Nanoparticle ,Bioengineering ,General Chemistry ,Coercivity ,Core shell nanoparticles ,Crystallinity ,Mechanics of Materials ,Phenomenological model ,Antiferromagnetism ,General Materials Science ,Particle size ,Electrical and Electronic Engineering - Abstract
The control of the size of bimagnetic nanoparticles represents an important step toward the study of fundamental properties and the design of new nanostructured magnetic materials. We report the synthesis and the structural and magnetic characterization of bimagnetic CoO/CoFe2O4 core/shell nanoparticles. The material was fabricated by a seed-mediated growth high-temperature decomposition method with sizes in the range of 5-11 nm. We show that the core/shell morphology favours the crystallinity of the shell phase, and the reduction of the particle size leads to a remarkable increase of the magnetic hardening. When the size is reduced, the coercive field at 5 K increases from 21.5 kOe to 30.8 kOe, while the blocking temperature decreases from 388 K to 167 K. The size effects on the magnetic behaviour are described through a phenomenological model for strongly ferri-/antiferromagnetic coupled phases.
- Published
- 2014
- Full Text
- View/download PDF
23. Evolution of the magnetic anisotropy with particle size in antiferromagnetic Cr2O3 nanoparticles
- Author
-
E. De Biasi, Roberto D. Zysler, G. Zampieri, Dina Tobia, M. Granada, H. E. Troiani, and Elin L. Winkler
- Subjects
Magnetic anisotropy ,Materials science ,Lattice constant ,Condensed matter physics ,Lattice (order) ,Phenomenological model ,General Physics and Astronomy ,Magnetic nanoparticles ,Antiferromagnetism ,Nanoparticle ,Particle size - Abstract
We report the magnetic properties of antiferromagnetic Cr2O3 from bulk material down to 6 nm nanoparticles. We have found a decrease in the lattice parameters and the cell volume when the size diminishes. On the contrary, the magnetic anisotropy constant, Keff, shows a nonmonotonic behavior. The Keff decreases from its bulk value, shows a minimum near ϕ∼30 nm and displays an important increase for smaller sizes. We analyzed the size dependence of Keff in terms of the magnetocrystalline and surface contributions, and we fitted the Keff size evolution on the basis of a phenomenological model taking into account the magnetically ordered core and the surface contribution.
- Published
- 2010
- Full Text
- View/download PDF
24. Exchange bias of Co nanoparticles embedded in Cr2O3 and Al2O3 matrices
- Author
-
H. E. Troiani, Elin L. Winkler, M. Granada, Dino Fiorani, Roberto D. Zysler, and Dina Tobia
- Subjects
Magnetization ,Exchange bias ,Condensed matter physics ,Magnetism ,Chemistry ,General Physics and Astronomy ,Antiferromagnetism ,Coercivity ,Magnetic hysteresis ,Néel temperature ,Superparamagnetism - Abstract
The magnetic properties of ∼1.5 nm Co nanoparticles embedded in a diamagnetic Al2O3 or antiferromagnetic (AFM) Cr2O3 matrix were investigated. For Co nanoparticles in Al2O3 matrix, a typical behavior of weakly interacting nanoparticles is observed, characterized by a superparamagnetic regime and a progressive blocking of particle moments centered at ⟨TB⟩=14 K. On the other hand, when the Co nanoparticles are immersed in a Cr2O3 matrix a very different magnetic behavior was found. The system shows large irreversibility in field-cooling/zero-field-cooling magnetization curves and much larger coercivity was observed even up to room temperature. Hysteresis loop shift is present when the system is field-cooled from a temperature above the Cr2O3 Neel temperature. We found that the exchange bias field follows a Brillouin type temperature dependence and goes to zero at TN. These results evidence the enhancement of thermal stability of the Co nanoparticle moments, associated to the increase of anisotropy due to th...
- Published
- 2009
- Full Text
- View/download PDF
25. Temperature evolution of the effective magnetic anisotropy in the MnCr2O4 spinel.
- Author
-
Dina Tobia, Julián Milano, María Teresa Causa, and Elin L Winkler
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.