1. A 1.11 mm2 IVUS SoC with ±50°-Range Plane Wave Transmit Beamforming at 40 MHz.
- Author
-
Zhang X, Arkan EF, Tekes C, Kilinc MS, Wang TH, Degertekin FL, and Li S
- Abstract
Intravascular ultrasound (IVUS) imaging catheters are significant tools for cardiovascular interventions, and their use can be expanded by realizing IVUS imaging guidewires and microcatheters. The miniaturization of these devices creates challenges in SNR due to the need for higher frequencies to provide adequate resolution. An integrated IVUS system with transmit beamforming can mitigate these limitations. This work presents the first practical highly integrated system-on-a-chip (SoC) with plane wave transmit beamforming at 40 MHz for IVUS on guidewire or microcatheters. The front-end circuitry has a 20-channel ultrasound transmitter (Tx) and receiver (Rx) array interfaced with a capacitive micromachined ultrasound transducer (CMUT) array. During each firing, all 20 Tx are excited with the same analog delay with respect to each other, which can be continuously adjusted between ~0 and 10 ns in two directions, generating a steerable plane wave in a range of ±/-50° for a phased array at 40 MHz. The unit delays are generated via a voltage-controlled delay line (VCDL), which only needs two external controls, one tuning the unit delay and the other determining the steering direction. The SoC is fabricated using a 180-nm high-voltage (HV) CMOS process and features a slender active area of 0.3 mm × 3.7 mm. The proposed SoC consumes 31.3 mW during the receiving mode. The beamformer's functionality and the SoC's overall performance were validated through acoustic characterization and imaging experiments.
- Published
- 2024
- Full Text
- View/download PDF