Back to Search
Start Over
Regime transition in electromechanical fluid atomization and implications to analyte ionization for mass spectrometric analysis.
- Source :
-
Journal of the American Society for Mass Spectrometry [J Am Soc Mass Spectrom] 2010 Nov; Vol. 21 (11), pp. 1900-5. Date of Electronic Publication: 2010 Jul 29. - Publication Year :
- 2010
-
Abstract
- The physical processes governing the transition from purely mechanical ejection to electromechanical ejection to electrospraying are investigated through complementary scaling analysis and optical visualization. Experimental characterization and visualization are performed with the ultrasonically-driven array of micromachined ultrasonic electrospray (AMUSE) ion source to decouple the electrical and mechanical fields. A new dimensionless parameter, the Fenn number, is introduced to define a transition between the spray regimes, in terms of its dependence on the characteristic Strouhal number for the ejection process. A fundamental relationship between the Fenn and Strouhal numbers is theoretically derived and confirmed experimentally in spraying liquid electrolytes of different ionic strength subjected to a varying magnitude electric field. This relationship and the basic understanding of the charged droplet generation physics have direct implications on the optimal ionization efficiency and mass spectrometric response for different types of analytes.<br /> (Copyright © 2010. Published by Elsevier Inc.)
Details
- Language :
- English
- ISSN :
- 1879-1123
- Volume :
- 21
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Journal of the American Society for Mass Spectrometry
- Publication Type :
- Academic Journal
- Accession number :
- 20729096
- Full Text :
- https://doi.org/10.1016/j.jasms.2010.07.007