1. Impact of non-linear resonators in periodic structures using a perturbation approach
- Author
-
Fabrizio Scarpa, Emeline Sadoulet-Reboul, Simon A Neild, Marc-Antoine Campana, Morvan Ouisse, Massimo Ruzzene, University of Bristol [Bristol], Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Georgia Institute of Technology [Atlanta], Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), and Daniel Guggenheim School of Aerospace Engineering (GA TECH)
- Subjects
0209 industrial biotechnology ,Periodic structures ,Aerospace Engineering ,[PHYS.MECA.GEME]Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph] ,02 engineering and technology ,01 natural sciences ,[SPI]Engineering Sciences [physics] ,Harmonic balance ,Resonator ,020901 industrial engineering & automation ,[PHYS.MECA.STRU]Physics [physics]/Mechanics [physics]/Structural mechanics [physics.class-ph] ,Dispersion relation ,0103 physical sciences ,Initial value problem ,Resonators ,Time domain ,010301 acoustics ,Civil and Structural Engineering ,Physics ,[PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph] ,Mechanical Engineering ,Numerical analysis ,Mathematical analysis ,Non-linearities ,[PHYS.MECA]Physics [physics]/Mechanics [physics] ,Computer Science Applications ,Nonlinear system ,Amplitude ,Control and Systems Engineering ,[PHYS.MECA.STRU]Physics [physics]/Mechanics [physics]/Mechanics of the structures [physics.class-ph] ,Signal Processing - Abstract
The work describes the wave propagation in a periodic structure formed by a linear spring-mass chain with local Duffing non-linear resonators. The wave propagation is studied using the Floquet-Bloch theorem combined with a perturbation approach to identify the dispersion relations in the nonlinear periodic structure. The theoretical model is benchmarked by a numerical model that considers an analogous finite resonant spring-mass system. The numerical nonlinear model provides an apparent dispersion relation of the structure obtained from an inverse identification method, the latter based on imposing a wave number as an initial condition, and then obtaining the corresponding frequency from the analysis of the chain amplitude in the time domain. The perturbation and the numerical methods are compared to discuss the behaviour of the wave propagation in the nonlinear resonators periodic chain. The perturbation is then compared with the Harmonic Balance Method previously used in the literature. Keywords: Periodic structures, Resonators, Non-linearities
- Published
- 2020
- Full Text
- View/download PDF