1. Knowledge Graphs
- Author
-
Axel Polleres, Lukas Schmelzeisen, Axel-Cyrille Ngonga Ngomo, Roberto Navigli, Steffen Staab, Eva Blomqvist, Claudio Gutierrez, José Emilio Labra Gayo, Juan F. Sequeda, Sabrina Kirrane, Aidan Hogan, Sabbir M. Rashid, Michael Cochez, Claudia d'Amato, Antoine Zimmermann, Sebastian Neumaier, Gerard de Melo, Anisa Rula, Millennium Institute for Foundational Research on Data (IMFD), Pontificia Universidad Católica de Chile (UC), Linköping University (LIU), Vrije Universiteit Brussel (VUB), Discovery Lab, Polytechnic University of Bari, Rutgers University System (Rutgers), WU Vienna, Universidad de Oviedo [Oviedo], Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Universität Paderborn (UPB), Tetherless World Constellation, Rensselaer Polytechnic Institute (RPI), University of Milano, University of Bonn, Universität Stuttgart [Stuttgart], data.world, École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT), Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), Institut Henri Fayol (FAYOL-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Département Informatique et systèmes intelligents ( FAYOL-ENSMSE), Ecole Nationale Supérieure des Mines de St Etienne, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Universität Bonn = University of Bonn, Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE), Department of Computer and Information Science - Linköping University, Computer Systems Section - Vrije Universiteit Amsterdam, Vrije Universiteit Amsterdam [Amsterdam] (VU), University of Bari Aldo Moro (UNIBA), Department of Informatics and System Sciences (Sapienza University of Rome), Università degli Studi di Milano-Bicocca [Milano] (UNIMIB), Universität Koblenz-Landau [Koblenz], University of Southampton, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Département Informatique et systèmes intelligents (FAYOL-ENSMSE), Mines Saint-Etienne, Breuil, Florent, Hogan, A, Blomqvist, E, Cochez, M, D'Amato, C, Melo, G, Gutierrez, C, Kirrane, S, Gayo, J, Navigli, R, Neumaier, S, Ngomo, A, Polleres, A, Rashid, S, Rula, A, Schmelzeisen, L, Sequeda, J, Staab, S, and Zimmermann, A
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Graph databases ,Theoretical computer science ,Computer science ,505002 Data protection ,Ontologie ,02 engineering and technology ,computer.software_genre ,Data modeling ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Machine Learning (cs.LG) ,102001 Artificial intelligence ,0202 electrical engineering, electronic engineering, information engineering ,Graph query language ,Graph algorithms ,102015 Informationssysteme ,Computer Sciences ,Graph algorithm ,Shape ,Contrast (statistics) ,Databases (cs.DB) ,Graph neural network ,Embeddings ,Graph (abstract data type) ,Graph neural networks ,Graph query languages ,Knowledge graphs ,Ontologies ,Rule mining ,Shapes ,020201 artificial intelligence & image processing ,[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation ,Embedding ,[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,General Computer Science ,Computer Science - Artificial Intelligence ,[INFO] Computer Science [cs] ,Theoretical Computer Science ,502050 Wirtschaftsinformatik ,Computer Science - Databases ,020204 information systems ,505002 Datenschutz ,Knowledge graphs, graph databases, graph query languages, shapes, ontologies, graph algorithms, embeddings, graph neural networks, rule mining ,102015 Information systems ,[INFO]Computer Science [cs] ,graph databases ,graph query languages ,shapes ,ontologies ,graph algorithms ,embeddings ,graph neural networks ,rule mining ,Knowledge graph ,Graph database ,502050 Business informatics ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Datavetenskap (datalogi) ,Artificial Intelligence (cs.AI) ,computer - Abstract
In this paper we provide a comprehensive introduction to knowledge graphs, which have recently garnered significant attention from both industry and academia in scenarios that require exploiting diverse, dynamic, large-scale collections of data. After some opening remarks, we motivate and contrast various graph-based data models and query languages that are used for knowledge graphs. We discuss the roles of schema, identity, and context in knowledge graphs. We explain how knowledge can be represented and extracted using a combination of deductive and inductive techniques. We summarise methods for the creation, enrichment, quality assessment, refinement, and publication of knowledge graphs. We provide an overview of prominent open knowledge graphs and enterprise knowledge graphs, their applications, and how they use the aforementioned techniques. We conclude with high-level future research directions for knowledge graphs., Comment: Revision from v5: Correcting errata from previous version for entailment/models, and some other minor typos
- Published
- 2020
- Full Text
- View/download PDF