Back to Search Start Over

A Multi-Agent Approach to Combine Reasoning and Learning for an Ethical Behavior

Authors :
Olivier Boissier
Jérémy Duval
Salima Hassas
Rémy Chaput
Mathieu Guillermin
Systèmes Cognitifs et Systèmes Multi-Agents (SyCoSMA)
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École Centrale de Lyon (ECL)
Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Université Lumière - Lyon 2 (UL2)
École des Mines de Saint-Étienne (Mines Saint-Étienne MSE)
Institut Mines-Télécom [Paris] (IMT)
Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS)
Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne)
Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA)
Institut Henri Fayol (FAYOL-ENSMSE)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Département Informatique et systèmes intelligents ( FAYOL-ENSMSE)
Ecole Nationale Supérieure des Mines de St Etienne
Université Catholique de Lyon (UCLy) (UCLy)
Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne)
Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)
UR CONFLUENCE : Sciences et Humanités (EA 1598)
Source :
AIES '21: AAAI/ACM Conference on AI, Ethics, and Society, AIES '21: AAAI/ACM Conference on AI, Ethics, and Society, May 2021, Virtual Event USA, United States. pp.13-23, ⟨10.1145/3461702.3462515⟩, AIES
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; The recent field of Machine Ethics is experiencing rapid growth to answer the societal need for Artificial Intelligence (AI) algorithms imbued with ethical considerations, such as benevolence toward human users and actors. Several approaches already exist for this purpose, mostly either by reasoning over a set of predefined ethical principles (Top-Down), or by learning new principles (Bottom-Up). While both methods have their own advantages and drawbacks, only few works have explored hybrid approaches, such as using symbolic rules to guide the learning process for instance, combining the advantages of each. This paper draws upon existing works to propose a novel hybrid method using symbolic judging agents to evaluate the ethics of learning agents' behaviors, and accordingly improve their ability to ethically behave in dynamic multi-agent environments. Multiple benefits ensue from this separation between judging and learning agents: agents can evolve (or be updated by human designers) separately, benefiting from co-construction processes; judging agents can act as accessible proxies for non-expert human stakeholders or regulators; and finally, multiple points of view (one per judging agent) can be adopted to judge the behavior of the same agent, which produces a richer feedback. Our proposed approach is applied to an energy distribution problem, in the context of a Smart Grid simulator, with continuous and multi-dimensional states and actions. The experiments and results show the ability of learning agents to correctly adapt their behaviors to comply with the judging agents' rules, including when rules evolve over time.

Details

Language :
English
Database :
OpenAIRE
Journal :
AIES '21: AAAI/ACM Conference on AI, Ethics, and Society, AIES '21: AAAI/ACM Conference on AI, Ethics, and Society, May 2021, Virtual Event USA, United States. pp.13-23, ⟨10.1145/3461702.3462515⟩, AIES
Accession number :
edsair.doi.dedup.....a6d7faf2838de71f182f18a78b186ba9