1. Synthesis and biological evaluation of novel photo-clickable adenosine and cyclic ADP-ribose analogs: 8-N 3 -2'-O-propargyladenosine and 8-N 3 -2'-O-propargyl-cADPR.
- Author
-
Andy D, Gunaratne GS, Marchant JS, Walseth TF, and Slama JT
- Subjects
- Humans, Adenosine pharmacology, Cyclic ADP-Ribose pharmacology, NAD
- Abstract
A photo-clickable analog of adenosine was devised and synthesized in which the photoactive functional group (8-azidoadenosine) and the click moiety (2'-O-propargyl-ether) were compactly combined within the structure of the adenosine nucleoside itself. We synthesized 8-N
3 -2'-O-propargyl adenosine in four steps starting from adenosine. This photo-clickable adenosine was 5'-phosphorylated and coupled to nicotinamide mononucleotide to form the NAD analog 8-N3 -2'-O-propargyl-NAD. This NAD analog was recognized by Aplysia californica ADP-ribosyl cyclase and enzymatically cyclized producing 8-N3 -2'-O-propargyl cyclic ADP-ribose. Photo-clickable cyclic-ADP-ribose analog was envisioned as a probe to label cyclic ADP-ribose binding proteins. The monofunctional 8-N3 -cADPR has previously been shown to be an antagonist of cADPR-induced calcium release [T.F. Walseth et. al., J. Biol. Chem (1993) 268, 26686-26691]. 2'-O-propargyl-cADPR was recognized as an agonist which elicited Ca2+ release when added at low concentration to sea urchin egg homogenates. The bifunctional 8-N3 -2'-O-propargyl cyclic ADP-ribose did not elicit Ca2+ release at low concentration or impact cyclic ADP-ribose mediated Ca2+ release either when added to sea urchin egg homogenates or when microinjected into cultured human U2OS cells. The photo-clickable adenosine will none-the-less be a useful scaffold for synthesizing photo-clickable probes for identifying proteins that interact with a variety of adenosine nucleotides., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF