49 results on '"Cotella, D."'
Search Results
2. The correlation between low back pain and strength training in elite athletes: a literature review [La correlación entre el dolor lumbar y el entrenamiento de fuerza en deportistas de élite: una revisión de la literature]
- Author
-
Baraldo L., Battaglino A., Piscitelli D., Pellicciari L., Sanchez-Romero E. A., Cotella D., Villafane J. H., Baraldo, L, Battaglino, A, Piscitelli, D, Pellicciari, L, Sanchez-Romero, E, Cotella, D, and Villafane, J
- Subjects
weight lifting ,correlation ,strength training ,Low back pain ,muscle injurie ,strength sport ,rehabilitation - Abstract
This study aims to analyze the correlation between LBP and elite athletes who practice sports where strength training intervenes via weightlifting. To analyse the correlation between low back pain and athletes who practice sports where strength training programs, a narrative review was conducted by two independent author through MEDLINE database search. Inclued study’s methodology quality has been evaluated using NIH quality assessment tool for Observational Cohort and Cross-Sectional Studies. Out of 830 retrieved articles, after titles, abstracts and full text assessment, four studies met the inclusion criteria and were included in the present narrative review. The NIH total score ranged from 10 to 12 points. Demographic and sport-specific factors can influence the prevalence of LBP. Our findings highlight the importance of developing future research to provide prevention programs to reduce the incidence of LBP, taking into account the demographics of athletes and the unique nature of their sport activity.
- Published
- 2023
3. Interaction of DPP10a with Kv4.3 channel complex results in a sustained current component of human transient outward current Ito
- Author
-
Turnow, K., Metzner, K., Cotella, D., Morales, M. J., Schaefer, M., Christ, T., Ravens, U., Wettwer, E., and Kämmerer, S.
- Published
- 2015
- Full Text
- View/download PDF
4. Identification of novel proteins binding the AU-rich element of ?-prothymosin mRNA through the selection of open reading frames (RIDome)
- Author
-
Patrucco L, Peano C, Chiesa A, Guida F, Luisi I, Boria I, Mignone F, De Bellis G, Zucchelli S, Gustincich S, Santoro C, Sblattero D, and Cotella D.
- Subjects
AU-rich element ,ELAVL1 ,R3HDM2 ,RALY ,RBM38 ,RBPome ,RNA-binding protein ,next-generation DNA sequencing ,open reading frame ,phage display - Abstract
We describe here a platform for high-throughput protein expression and interaction analysis aimed at identifying the RNA-interacting domainome. This approach combines the selection of a phage library displaying "filtered" open reading frames with next-generation DNA sequencing. The method was validated using an RNA bait corresponding to the AU-rich element of ?-prothymosin, an RNA motif that promotes mRNA stability and translation through its interaction with the RNA-binding protein ELAVL1. With this strategy, we not only confirmed known RNA-binding proteins that specifically interact with the target RNA (such as ELAVL1/HuR and RBM38) but also identified proteins not previously known to be ARE-binding (R3HDM2 and RALY). We propose this technology as a novel approach for studying the RNA-binding proteome
- Published
- 2015
5. SINEUPs: A new class of natural and synthetic antisense long non-coding RNAs that activate translation
- Author
-
Zucchelli, S, primary, Cotella, D, additional, Takahashi, H, additional, Carrieri, C, additional, Cimatti, L, additional, Fasolo, F, additional, Jones, MH, additional, Sblattero, D, additional, Sanges, R, additional, Santoro, C, additional, Persichetti, F, additional, Carninci, P, additional, and Gustincich, S, additional
- Published
- 2015
- Full Text
- View/download PDF
6. Gemini Cationic Surfactants. Synthesis and Characterization of Possible Vectors for Cell Transfection
- Author
-
Barni, Ermanno, Barolo, Claudia, Bellinvia, Silvia, Quagliotto, Pierluigi, Viscardi, Guido, Fisicaro, E., Compari, C., Santoro, C., Secco, P., and Cotella, D.
- Published
- 2004
7. Accessory subunits alter the temperature sensitivity of Kv4.3 channel complexes
- Author
-
Radicke, S., primary, Riedel, T., additional, Cotella, D., additional, Turnow, K., additional, Ravens, U., additional, Schaefer, M., additional, and Wettwer, E., additional
- Published
- 2013
- Full Text
- View/download PDF
8. Toxic Role of K+ Channel Oxidation in Mammalian Brain
- Author
-
Cotella, D., primary, Hernandez-Enriquez, B., additional, Wu, X., additional, Li, R., additional, Pan, Z., additional, Leveille, J., additional, Link, C. D., additional, Oddo, S., additional, and Sesti, F., additional
- Published
- 2012
- Full Text
- View/download PDF
9. Sunday, 18 July 2010
- Author
-
Schuchardt, M., primary, Toelle, M., additional, Huang, T., additional, Wiedon, A., additional, Van Der Giet, M., additional, Mill, C., additional, George, S., additional, Jeremy, J., additional, Santulli, G., additional, Illario, M., additional, Cipolletta, E., additional, Sorriento, D., additional, Del Giudice, C., additional, Anastasio, A., additional, Trimarco, B., additional, Iaccarino, G., additional, Jobs, A., additional, Wagner, C., additional, Kurtz, A., additional, De Wit, C., additional, Koller, A., additional, Suvorava, T., additional, Weber, M., additional, Dao, V., additional, Kojda, G., additional, Tsaousi, A., additional, Lyon, C., additional, Williams, H., additional, Barth, N., additional, Loot, A., additional, Fleming, I., additional, Keul, P., additional, Lucke, S., additional, Graeler, M., additional, Heusch, G., additional, Levkau, B., additional, Biessen, E., additional, De Jager, S., additional, Bermudez-Pulgarin, B., additional, Bot, I., additional, Abia, R., additional, Van Berkel, T., additional, Renger, A., additional, Noack, C., additional, Zafiriou, M., additional, Dietz, R., additional, Bergmann, M., additional, Zelarayan, L., additional, Hammond, J., additional, Hamelet, J., additional, Van Assche, T., additional, Belge, C., additional, Vanderper, A., additional, Langin, D., additional, Herijgers, P., additional, Balligand, J., additional, Perrot, A., additional, Neubert, M., additional, Posch, M., additional, Oezcelik, C., additional, Waldmuller, S., additional, Berger, F., additional, Scheffold, T., additional, Bouvagnet, P., additional, Ozcelik, C., additional, Lebreiro, A., additional, Martins, E., additional, Lourenco, P., additional, Cruz, C., additional, Martins, M., additional, Bettencourt, P., additional, Maciel, M., additional, Abreu-Lima, C., additional, Pilichou, K., additional, Bauce, B., additional, Rampazzo, A., additional, Carturan, E., additional, Corrado, D., additional, Thiene, G., additional, Basso, C., additional, Piccini, I., additional, Fortmueller, L., additional, Kuhlmann, M., additional, Schaefers, M., additional, Carmeliet, P., additional, Kirchhof, P., additional, Fabritz, L., additional, Sanchez, J., additional, Rodriguez-Sinovas, A., additional, Agullo, E., additional, Garcia-Dorado, D., additional, Lymperopoulos, A., additional, Rengo, G., additional, Gao, E., additional, Zincarelli, C., additional, Koch, W., additional, Morgan, P., additional, Diez, A., additional, Perez, N., additional, Cingolani, H., additional, Zahradnikova, A., additional, Polakova, E., additional, Zahradnik, I., additional, Fluschnik, N., additional, Sossalla, S., additional, Ort, K., additional, Neef, S., additional, Hasenfuss, G., additional, Maier, L., additional, Weinert, S., additional, Poitz, D., additional, Herold, J., additional, Schmeisser, A., additional, Strasser, J., additional, Braun-Dullaeus, R., additional, Nazari-Jahantigh, M., additional, Weber, C., additional, Schober, A., additional, Leuner, A., additional, Eichhorn, B., additional, Ravens, U., additional, Morawietz, H., additional, Babes, E., additional, Babes, V., additional, Popescu, M., additional, Ardelean, A., additional, Rus, M., additional, Bustea, C., additional, Gwozdz, P., additional, Csanyi, G., additional, Luzak, B., additional, Gajda, M., additional, Mateuszuk, L., additional, Chmura-Skirlinska, A., additional, Watala, C., additional, Chlopicki, S., additional, Kierzkowska, I., additional, Sulicka, J., additional, Kwater, A., additional, Strach, M., additional, Surdacki, A., additional, Siedlar, M., additional, Grodzicki, T., additional, Olieslagers, S., additional, Pardali, L., additional, Tchaikovski, V., additional, Ten Dijke, P., additional, Waltenberger, J., additional, Renner, M., additional, Redwan, B., additional, Winter, M., additional, Panzenboeck, A., additional, Jakowitsch, J., additional, Sadushi-Kolici, R., additional, Bonderman, D., additional, Lang, I., additional, Toso, A., additional, Tanini, L., additional, Pizzetti, T., additional, Leoncini, M., additional, Maioli, M., additional, Tedeschi, D., additional, Oliviero, C., additional, Bellandi, F., additional, Casprini, P., additional, Amato, M., additional, Molins, B., additional, Pena, E., additional, Badimon, L., additional, Ferreiro Gutierrez, J., additional, Ueno, M., additional, Alissa, R., additional, Dharmashankar, K., additional, Capodanno, D., additional, Desai, B., additional, Bass, T., additional, Angiolillo, D., additional, Chabielska, E., additional, Gromotowicz, A., additional, Szemraj, J., additional, Stankiewicz, A., additional, Zakrzeska, A., additional, Mohammed, S., additional, Molla, F., additional, Soldo, A., additional, Russo, I., additional, Germano, G., additional, Balconi, G., additional, Staszewsky, L., additional, Latini, R., additional, Lynch, F., additional, Austin, C., additional, Prendergast, B., additional, Keenan, D., additional, Malik, R., additional, Izzard, A., additional, Heagerty, A., additional, Czikora, A., additional, Lizanecz, E., additional, Rutkai, I., additional, Boczan, J., additional, Porszasz, R., additional, Papp, Z., additional, Edes, I., additional, Toth, A., additional, Colantuoni, A., additional, Vagnani, S., additional, Lapi, D., additional, Maroz-Vadalazhskaya, N., additional, Koslov, I., additional, Shumavetz, V., additional, Glibovskaya, T., additional, Ostrovskiy, Y., additional, Koutsiaris, A., additional, Tachmitzi, S., additional, Kotoula, M., additional, Giannoukas, A., additional, Tsironi, E., additional, Darago, A., additional, Orosz, P., additional, Megyesi, Z., additional, Schudeja, S., additional, Matschke, K., additional, Deussen, A., additional, Castro, M., additional, Cena, J., additional, Walsh, M., additional, Schulz, R., additional, Poddar, K., additional, Rha, S., additional, Ramasamy, S., additional, Park, J., additional, Choi, C., additional, Seo, H., additional, Park, C., additional, Oh, D., additional, Almeida, J., additional, Pimenta, S., additional, Bernardes, J., additional, Machado, J., additional, Sabatasso, S., additional, Laissue, J., additional, Hlushchuk, R., additional, Brauer-Krisch, E., additional, Bravin, A., additional, Blattmann, H., additional, Michaud, K., additional, Djonov, V., additional, Hirschberg, K., additional, Tarcea, V., additional, Pali, S., additional, Korkmaz, S., additional, Loganathan, S., additional, Merkely, B., additional, Karck, M., additional, Szabo, G., additional, Pagliani, L., additional, Faggin, E., additional, Rattazzi, M., additional, Puato, M., additional, Presta, M., additional, Grego, F., additional, Deriu, G., additional, Pauletto, P., additional, Kaiser, R., additional, Albrecht, K., additional, Schgoer, W., additional, Theurl, M., additional, Beer, A., additional, Wiedemann, D., additional, Steger, C., additional, Bonaros, N., additional, Kirchmair, R., additional, Kharlamov, A., additional, Cabaravdic, M., additional, Breuss, J., additional, Uhrin, P., additional, Binder, B., additional, Fiordaliso, F., additional, Maggioni, M., additional, Biondi, A., additional, Masson, S., additional, Cervo, L., additional, Francke, A., additional, Soenke, W., additional, Strasser, R., additional, Hecht, N., additional, Vajkoczy, P., additional, Woitzik, J., additional, Hackbusch, D., additional, Gatzke, N., additional, Duelsner, A., additional, Tsuprykov, O., additional, Slavic, S., additional, Buschmann, I., additional, Kappert, K., additional, Massaro, M., additional, Scoditti, E., additional, Carluccio, M., additional, Storelli, C., additional, Distante, A., additional, De Caterina, R., additional, Barandi, L., additional, Harmati, G., additional, Simko, J., additional, Horvath, B., additional, Szentandrassy, N., additional, Banyasz, T., additional, Magyar, J., additional, Nanasi, P., additional, Kaya, A., additional, Uzunhasan, I., additional, Yildiz, A., additional, Yigit, Z., additional, Turkoglu, C., additional, Doisne, N., additional, Zannad, N., additional, Hivert, B., additional, Cosnay, P., additional, Maupoil, V., additional, Findlay, I., additional, Virag, L., additional, Kristof, A., additional, Koncz, I., additional, Szel, T., additional, Jost, N., additional, Biliczki, P., additional, Papp, J., additional, Varro, A., additional, Bukowska, A., additional, Skopp, K., additional, Hammwoehner, M., additional, Huth, C., additional, Bode-Boeger, S., additional, Goette, A., additional, Workman, A., additional, Dempster, J., additional, Marshall, G., additional, Rankin, A., additional, Revnic, C., additional, Ginghina, C., additional, Revnic, F., additional, Yakushev, S., additional, Petrushanko, I., additional, Makhro, A., additional, Segato Komniski, M., additional, Mitkevich, V., additional, Makarov, A., additional, Gassmann, M., additional, Bogdanova, A., additional, Rutkovskiy, A., additional, Mariero, L., additional, Stenslokken, K., additional, Valen, G., additional, Vaage, J., additional, Dizayee, S., additional, Kaestner, S., additional, Kuck, F., additional, Piekorz, R., additional, Hein, P., additional, Matthes, J., additional, Nurnberg, B., additional, Herzig, S., additional, Hertel, F., additional, Switalski, A., additional, Bender, K., additional, Kienitz, M.-C., additional, Pott, L., additional, Fornai, L., additional, Angelini, A., additional, Erika Amstalden Van Hove, E., additional, Fedrigo, M., additional, Heeren, R., additional, Kruse, M., additional, Pongs, O., additional, Lehmann, H., additional, Martens-Lobenhoffer, J., additional, Roehl, F., additional, Radicke, S., additional, Cotella, C., additional, Sblattero, D., additional, Schaefer, M., additional, Wettwer, E., additional, Santoro, C., additional, Seyler, C., additional, Kulzer, M., additional, Zitron, E., additional, Scholz, E., additional, Welke, F., additional, Thomas, D., additional, Karle, C., additional, Schmidt, K., additional, Dobrev, D., additional, Houshmand, N., additional, Menesi, D., additional, Cotella, D., additional, Szuts, V., additional, Puskas, L., additional, Kiss, I., additional, Deak, F., additional, Tereshchenko, S., additional, Gladyshev, M., additional, Kalachova, G., additional, Syshchik, N., additional, Gogolashvili, N., additional, Dedok, E., additional, Evert, L., additional, Wenzel, J., additional, Brandenburger, M., additional, Bogdan, R., additional, Richardt, D., additional, Reppel, M., additional, Hescheler, J., additional, Dendorfer, A., additional, Terlau, H., additional, Wiegerinck, R., additional, Galvez-Monton, C., additional, Jorge, E., additional, Martinez, R., additional, Ricart, E., additional, Cinca, J., additional, Bagavananthem Andavan, G., additional, Lemmens Gruber, R., additional, Brack, K., additional, Coote, J., additional, Ng, G., additional, Daimi, H., additional, Haj Khelil, A., additional, Neji, A., additional, Ben Hamda, K., additional, Maaoui, S., additional, Aranega, A., additional, Chibani, J., additional, Franco Jaime, D., additional, Tanko, A.-S., additional, Daniel, J.-M., additional, Bielenberg, W., additional, Stieger, P., additional, Tillmanns, H., additional, Sedding, D., additional, Fortini, C., additional, Toffoletto, B., additional, Fucili, A., additional, Beltrami, A., additional, Fiorelli, V., additional, Francolini, G., additional, Ferrari, R., additional, Beltrami, C., additional, Castellani, C., additional, Ravara, B., additional, Tavano, R., additional, Vettor, R., additional, De Coppi, P., additional, Papini, E., additional, Gunetti, M., additional, Fagioli, F., additional, Suffredini, S., additional, Sartiani, L., additional, Stillitano, F., additional, Mugelli, A., additional, Cerbai, E., additional, Krausgrill, B., additional, Halbach, M., additional, Soemantri, S., additional, Schenk, K., additional, Lange, N., additional, Saric, T., additional, Muller-Ehmsen, J., additional, Kavanagh, D., additional, Zhao, Y., additional, Yemm, A., additional, Kalia, N., additional, Wright, E., additional, Farrell, K., additional, Wallrapp, C., additional, Geigle, P., additional, Lewis, A., additional, Stratford, P., additional, Malik, N., additional, Holt, C., additional, Raths, M., additional, Zagallo, M., additional, Luni, C., additional, Serena, E., additional, Cimetta, E., additional, Zatti, S., additional, Giobbe, G., additional, Elvassore, N., additional, Zaglia, T., additional, Zambon, A., additional, Gordon, K., additional, Mioulane, M., additional, Foldes, G., additional, Ali, N., additional, Harding, S., additional, Gorbe, A., additional, Szunyog, A., additional, Varga, Z., additional, Pirity, M., additional, Rungaruniert, S., additional, Dinnyes, A., additional, Csont, T., additional, Ferdinandy, P., additional, Iqbal, A., additional, Schneider, M. D., additional, Khodjaeva, E., additional, Ibadov, R., additional, Khalikulov, K., additional, Mansurov, A., additional, Astvatsatryan, A., additional, Senan, M., additional, Nemeth, A., additional, Lenkey, Z., additional, Ajtay, Z., additional, Cziraki, A., additional, Sulyok, E., additional, Horvath, I., additional, Lobenhoffer, J., additional, Bode-Boger, S., additional, Li, J., additional, He, Y., additional, Yang, X., additional, Wang, F., additional, Xu, H., additional, Li, X., additional, Zhao, X., additional, Lin, Y., additional, Juszynski, M., additional, Ciszek, B., additional, Jablonska, A., additional, Stachurska, E., additional, Ratajska, A., additional, Atkinson, A., additional, Inada, S., additional, Sleiman, R., additional, Zhang, H., additional, Boyett, M., additional, Dobrzynski, H., additional, Fedorenko, O., additional, Hao, G., additional, Yanni, J., additional, Buckley, D., additional, Anderson, R., additional, Ma, Y., additional, Ma, X., additional, Hu, Y., additional, Yang, Y., additional, Huang, D., additional, Liu, F., additional, Huang, Y., additional, Liu, C., additional, Jedrzejczyk, T., additional, Balwicki, L., additional, Wierucki, L., additional, Zdrojewski, T., additional, Agarkova, I., additional, Vogel, J., additional, Korybalska, K., additional, Pyda, M., additional, Witowski, J., additional, Ibatov, A., additional, Sozmen, N., additional, Seymen, A., additional, Tuncay, E., additional, Turan, B., additional, Chen, B., additional, Houston-Feenstra, L., additional, Chiong, J. R., additional, Jutzy, K., additional, Furundzija, V., additional, Kaufmann, J., additional, Meyborg, H., additional, Fleck, E., additional, Stawowy, P., additional, Ksiezycka-Majczynska, E., additional, Lubiszewska, B., additional, Kruk, M., additional, Kurjata, P., additional, Ruzyllo, W., additional, Driesen, R., additional, Coenen, T., additional, Fagard, R., additional, Sipido, K., additional, Petrov, V., additional, Aksentijevic, D., additional, Lygate, C., additional, Makinen, K., additional, Sebag-Montefiore, L., additional, Medway, D., additional, Schneider, J., additional, Neubauer, S., additional, Gasser, R., additional, Holzwart, E., additional, Rainer, P., additional, Von Lewinski, D., additional, Maechler, H., additional, Gasser, S., additional, Roessl, U., additional, Pieske, B., additional, Krueger, J., additional, Kintscher, U., additional, Podramagi, T., additional, Paju, K., additional, Piirsoo, A., additional, Roosimaa, M., additional, Kadaja, L., additional, Orlova, E., additional, Ruusalepp, A., additional, Seppet, E., additional, Auquier, J., additional, Ginion, A., additional, Hue, L., additional, Horman, S., additional, Beauloye, C., additional, Vanoverschelde, J., additional, Bertrand, L., additional, Fekete, V., additional, Zvara, A., additional, Pipis, J., additional, Konya, C., additional, Csonka, C., additional, Kraigher-Krainer, E., additional, Von Lewinksi, D., additional, Gonzalez-Loyola, A., additional, Barba, I., additional, Fernandez-Sanz, C., additional, Ruiz-Meana, M., additional, Forteza, M., additional, Bodi Peris, V., additional, Monleon, D., additional, Mainar, L., additional, Morales, J., additional, Moratal, D., additional, Trapero, I., additional, Chorro, F., additional, Leszek, P., additional, Sochanowicz, B., additional, Szperl, M., additional, Kolsut, P., additional, Piotrowski, W., additional, Rywik, T., additional, Danko, B., additional, Kruszewski, M., additional, Stanley, W., additional, Khairallah, R., additional, Khanna, N., additional, O'shea, K., additional, Kristian, T., additional, Hecker, P., additional, Des Rosiers, R., additional, Fiskum, G., additional, Fernandez-Alfonso, M., additional, Guzman-Ruiz, R., additional, Somoza, B., additional, Gil-Ortega, M., additional, Attane, C., additional, Castan-Laurell, I., additional, Valet, P., additional, Ruiz-Gayo, M., additional, Denissevich, T., additional, Schrepper, A., additional, Schwarzer, M., additional, Amorim, P., additional, Schoepe, M., additional, Mohr, F., additional, Doenst, T., additional, Chiellini, G., additional, Ghelardoni, S., additional, Saba, A., additional, Marchini, M., additional, Frascarelli, S., additional, Raffaelli, A., additional, Scanlan, T., additional, Zucchi, R., additional, Van Den Akker, N., additional, Molin, D., additional, Kolk, F., additional, Jeukens, F., additional, Olde Engberink, R., additional, Post, M., additional, Verbruggen, S., additional, Schulten, H., additional, Rochais, F., additional, Kelly, R., additional, Aberg, M., additional, Johnell, M., additional, Wickstrom, M., additional, Siegbahn, A., additional, Dimitrakis, P., additional, Groppalli, V., additional, Ott, D., additional, Seifriz, F., additional, Suter, T., additional, Zuppinger, C., additional, Kashcheyeu, Y., additional, Mueller, R., additional, Wiesen, M., additional, Gruendemann, D., additional, Falcao-Pires, I., additional, Fontes-Sousa, A., additional, Lopes-Conceicao, L., additional, Bras-Silva, C., additional, Leite-Moreira, A., additional, Bukauskas, F., additional, Palacios-Prado, N., additional, Norheim, F., additional, Raastad, T., additional, Thiede, B., additional, Drevon, C., additional, Haugen, F., additional, Lindner, D., additional, Westermann, D., additional, Zietsch, C., additional, Schultheiss, H.-P., additional, Tschoepe, C., additional, Horn, M., additional, Graham, H., additional, Hall, M., additional, Richards, M., additional, Clarke, J., additional, Dibb, K., additional, Trafford, A., additional, Cheng, C.-F., additional, Lin, H., additional, Eigeldiger-Berthou, S., additional, Buntschu, P., additional, Frobert, A., additional, Flueck, M., additional, Tevaearai, H., additional, Kadner, A., additional, Mikhailov, A., additional, Torrado, M., additional, Centeno, A., additional, Lopez, E., additional, Lourido, L., additional, Castro Beiras, A., additional, Popov, T., additional, Srdanovic, I., additional, Petrovic, M., additional, Canji, T., additional, Kovacevic, M., additional, Jovelic, A., additional, Sladojevic, M., additional, Panic, G., additional, Kararigas, G., additional, Fliegner, D., additional, Regitz-Zagrosek, V., additional, De La Rosa Sanchez, A., additional, Dominguez, J., additional, Sedmera, D., additional, Franco, D., additional, Medunjanin, S., additional, Burgbacher, F., additional, Han, W., additional, Zhang, J., additional, Gao, X., additional, Bayliss, C., additional, Song, W., additional, Stuckey, D., additional, Dyer, E., additional, Leung, M.-C., additional, Monserrat, L., additional, Marston, S., additional, Fusco, A., additional, Paillard, M., additional, Liang, J., additional, Strub, G., additional, Gomez, L., additional, Hait, N., additional, Allegood, J., additional, Lesnefsky, E., additional, Spiegel, S., additional, Zuchi, C., additional, Coiro, S., additional, Bettini, M., additional, Ciliberti, G., additional, Mancini, I., additional, Tritto, I., additional, Becker, L., additional, Ambrosio, G., additional, Adam, T., additional, Sharp, S., additional, Opie, L., additional, Lecour, S., additional, Khaliulin, I., additional, Parker, J., additional, Halestrap, A., additional, Kandasamy, A., additional, Osterholt, M., additional, Miro-Casas, E., additional, Boengler, K., additional, Menazza, S., additional, Canton, M., additional, Sheeran, F., additional, Di Lisa, F., additional, Pepe, S., additional, Borchi, E., additional, Manni, M., additional, Bargelli, V., additional, Giordano, C., additional, D'amati, G., additional, Nediani, C., additional, Raimondi, L., additional, Micova, P., additional, Balkova, P., additional, Kolar, F., additional, Neckar, J., additional, Novak, F., additional, Novakova, O., additional, Schuchardt, M., additional, Pruefer, N., additional, Pruefer, J., additional, Jankowski, V., additional, Jankowski, J., additional, Su, Y., additional, Zervou, S., additional, Seidel, B., additional, Radovits, T., additional, Barnucz, E., additional, Aggeli, I., additional, Kefaloyianni, E., additional, Beis, I., additional, Gaitanaki, C., additional, Lacerda, L., additional, Somers, S., additional, Paur, H., additional, Nikolaev, V., additional, Lyon, A., additional, Silva, S., additional, Gomes, M., additional, Ferreira, P., additional, Capuano, V., additional, Ferron, L., additional, Ruchon, Y., additional, Ben Mohamed, F., additional, Renaud, J.-F., additional, Goncalves, N., additional, Gavina, C., additional, Pinho, S., additional, Moura, C., additional, Amorim, M., additional, Pinho, P., additional, Christ, T., additional, Molenaar, P., additional, Kaumann, A., additional, Kletsiou, E., additional, Giannakopoulou, M., additional, Bozas, E., additional, Iliodromitis, E., additional, Anastasiou-Nana, M., additional, Papathanassoglou, E., additional, Chottova Dvorakova, M., additional, Mistrova, E., additional, Slavikova, J., additional, Hynie, S., additional, Sida, P., additional, Klenerova, V., additional, Zakrzewicz, A., additional, Hoffmann, C., additional, Hohberg, M., additional, Chlench, S., additional, Maroski, J., additional, Drab, M., additional, Siegel, G., additional, Pries, A., additional, Schrot, G., additional, Wilck, N., additional, Fechner, M., additional, Arias, A., additional, Meiners, S., additional, Baumann, G., additional, Stangl, V., additional, Stangl, K., additional, Ludwig, A., additional, Christ, A., additional, Eijgelaar, W., additional, Daemen, M., additional, Penfold, M., additional, Schall, T., additional, Hintenberger, R., additional, Kaun, C., additional, Pfaffenberger, S., additional, Maurer, G., additional, Huber, K., additional, Wojta, J., additional, Demyanets, S., additional, Titov, V., additional, Chin-Dusting, J., additional, Vaisman, B., additional, Khong, S., additional, Remaley, A., additional, Andrews, K., additional, Hoeper, A., additional, Khalid, A., additional, Fuglested, B., additional, Aasum, E., additional, Larsen, T., additional, Diebold, I., additional, Petry, A., additional, Djordjevic, T., additional, Belaiba, R., additional, Fratz, S., additional, Hess, J., additional, Kietzmann, T., additional, Goerlach, A., additional, Chess, D., additional, Walsh, K., additional, Van Der Velden, J., additional, Moreira-Goncalves, D., additional, Paulus, W., additional, Niessen, H., additional, Perlini, S., additional, Azibani, F., additional, Tournoux, F., additional, Fazal, L., additional, Polidano, E., additional, Merval, R., additional, Chatziantoniou, C., additional, Samuel, J., additional, Delcayre, C., additional, Mgandela, P., additional, Brooksbank, R., additional, Maswanganyi, T., additional, Woodiwiss, A., additional, Norton, G., additional, Makaula, S., additional, Bucciantini, M., additional, Spinelli, V., additional, Coppini, R., additional, Russo, E., additional, Stefani, M., additional, Sukumaran, V., additional, Watanabe, K., additional, Ma, M., additional, Thandavarayan, R., additional, Azrozal, W., additional, Sari, F., additional, Shimazaki, H., additional, Kobayashi, Y., additional, Roleder, T., additional, Golba, K., additional, Deja, M., additional, Malinowski, M., additional, Wos, S., additional, Grebe, M., additional, Preissner, K., additional, Ercan, E., additional, Guven, A., additional, Asgun, F., additional, Ickin, M., additional, Ercan, F., additional, Kaplan, A., additional, Yavuz, O., additional, Bagla, S., additional, Kuka, J., additional, Vilskersts, R., additional, Vavers, E., additional, Liepins, E., additional, Dambrova, M., additional, Duerr, G., additional, Suchan, G., additional, Heuft, T., additional, Klaas, T., additional, Zimmer, A., additional, Welz, A., additional, Fleischmann, B., additional, Dewald, O., additional, Voelkl, J., additional, Haubner, B., additional, Kremser, C., additional, Mayr, A., additional, Klug, G., additional, Reiner, M., additional, Pachinger, O., additional, Metzler, B., additional, Pisarenko, O., additional, Shulzhenko, V., additional, Pelogeykina, Y., additional, Khatri, D., additional, Studneva, I., additional, Bencsik, P., additional, Kocsis, G., additional, Shamloo, M., additional, Woodburn, K., additional, Szucs, G., additional, Kupai, K., additional, Csont, C., additional, Kocsisne Fodor, G., additional, Monostori, P., additional, and Turi, S., additional
- Published
- 2010
- Full Text
- View/download PDF
10. Interaction of DPP10a with Kv4.3 channel complex results in a sustained current component of human transient outward current Ito.
- Author
-
Turnow, K., Metzner, K., Cotella, D., Morales, M. J., Schaefer, M., Christ, T., Ravens, U., Wettwer, E., and Kämmerer, S.
- Abstract
The sustained component of the K
+ outward current in human atrial myocytes is believed to be due to the slowly inactivating ultra-rapid potassium current IKur and not to the fast inactivating transient outward current Ito . Here we provide evidence for contribution of Ito to this late current due to the effects of dipeptidyl peptidase-like protein (DPP) 10 (DPP10a) interacting with Kv4.3 channels. We studied the late current component of Ito in human atrial myocytes and CHO cells co-expressing Kv4.3 or Kv4.3/KChIP2 (control) and DPP proteins using voltage-clamp technique and a pharmacological approach. A voltage dependent and slowly inactivating late current (43 % of peak amplitude) could be observed in atrial myocytes. We found a similar current in CHO cells expressing Kv4.3/KChIP2 + DPP10a, but not in cells co-expressing Kv4.3 + DPP or Kv4.3/KChIP2 + DPP6-S. Assuming that DPP10a influences atrial Ito , we detected DPP10 expression of three alternatively spliced mRNAs, DPP10 protein and colocalization of Kv4.3 and DPP10 proteins in human atrial myocytes. DPP10a did not affect properties of expressed Kv1.5 excluding a contribution to the sustained IKur in atrial cells. To test for the contribution of Kv4-based Ito on sustained K+ outward currents in human atrial myocytes, we used 4-AP to block IKur , in combination with Heteropoda toxin 2 to block Kv4 channels. We could clearly separate an Ito fraction of about 19 % contributing to the late current in atrial myocytes. Thus, the interaction of DPP10a, expressed in human atrium, with Kv4.3 channels generates a sustained current component of Ito , which may affect late repolarization phase of atrial action potentials. [ABSTRACT FROM AUTHOR]- Published
- 2015
- Full Text
- View/download PDF
11. Functional modulation of the transient outward current Ito by KCNE β-subunits and regional distribution in human non-failing and failing hearts
- Author
-
RADICKE, S, primary, COTELLA, D, additional, GRAF, E, additional, BANSE, U, additional, JOST, N, additional, VARRO, A, additional, TSENG, G, additional, RAVENS, U, additional, and WETTWER, E, additional
- Published
- 2006
- Full Text
- View/download PDF
12. Human genome meeting 2016
- Author
-
Srivastava, A., Wang, Y., Huang, R., Skinner, C., Thompson, T., Pollard, L., Wood, T., Luo, F., Stevenson, R., Polimanti, R., Gelernter, J., Lin, X., Lim, I., Wu, Y., Teh, A., Chen, L., Aris, I., Soh, S., Tint, M., MacIsaac, J., Yap, F., Kwek, K., Saw, S., Kobor, M., Meaney, M., Godfrey, K., Chong, Y., Holbrook, J., Lee, Y., Gluckman, P., Karnani, N., Kapoor, A., Lee, D., Chakravarti, A., Maercker, C., Graf, F., Boutros, M., Stamoulis, G., Santoni, F., Makrythanasis, P., Letourneau, A., Guipponi, M., Panousis, N., Garieri, M., Ribaux, P., Falconnet, E., Borel, C., Antonarakis, S., Kumar, S., Curran, J., Blangero, J., Chatterjee, S., Kapoor, A., Akiyama, J., Auer, D., Berrios, C., Pennacchio, L., Chakravarti, A., Donti, T., Cappuccio, G., Miller, M., Atwal, P., Kennedy, A., Cardon, A., Bacino, C., Emrick, L., Hertecant, J., Baumer, F., Porter, B., Bainbridge, M., Bonnen, P., Graham, B., Sutton, R., Sun, Q., Elsea, S., Hu, Z., Wang, P., Zhu, Y., Zhao, J., Xiong, M., Bennett, David, Hidalgo-Miranda, A., Romero-Cordoba, S., Rodriguez-Cuevas, S., Rebollar-Vega, R., Tagliabue, E., Iorio, M., D’Ippolito, E., Baroni, S., Kaczkowski, B., Tanaka, Y., Kawaji, H., Sandelin, A., Andersson, R., Itoh, M., Lassmann, T., Hayashizaki, Y., Carninci, P., Forrest, A., Semple, C., Rosenthal, E., Shirts, B., Amendola, L., Gallego, C., Horike-Pyne, M., Burt, A., Robertson, P., Beyers, P., Nefcy, C., Veenstra, D., Hisama, F., Bennett, R., Dorschner, M., Nickerson, D., Smith, J., Patterson, K., Crosslin, D., Nassir, R., Zubair, N., Harrison, T., Peters, U., Jarvik, G., Menghi, F., Inaki, K., Woo, X., Kumar, P., Grzeda, K., Malhotra, A., Kim, H., Ucar, D., Shreckengast, P., Karuturi, K., Keck, J., Chuang, J., Liu, E., Ji, B., Tyler, A., Ananda, G., Carter, G., Nikbakht, H., Montagne, M., Zeinieh, M., Harutyunyan, A., Mcconechy, M., Jabado, N., Lavigne, P., Majewski, J., Goldstein, J., Overman, M., Varadhachary, G., Shroff, R., Wolff, R., Javle, M., Futreal, A., Fogelman, D., Bravo, L., Fajardo, W., Gomez, H., Castaneda, C., Rolfo, C., Pinto, J., Akdemir, K., Chin, L., Futreal, A., Patterson, S., Statz, C., Mockus, S., Nikolaev, S., Bonilla, X., Parmentier, L., King, B., Bezrukov, F., Kaya, G., Zoete, V., Seplyarskiy, V., Sharpe, H., McKee, T., Letourneau, A., Ribaux, P., Popadin, K., Basset-Seguin, N., Chaabene, R., Santoni, F., Andrianova, M., Guipponi, M., Garieri, M., Verdan, C., Grosdemange, K., Sumara, O., Eilers, M., Aifantis, I., Michielin, O., de Sauvage, F., Antonarakis, S., Likhitrattanapisal, S., Lincoln, S., Kurian, A., Desmond, A., Yang, S., Kobayashi, Y., Ford, J., Ellisen, L., Peters, T., Alvarez, K., Hollingsworth, E., Lopez-Terrada, D., Hastie, A., Dzakula, Z., Pang, A., Lam, E., Anantharaman, T., Saghbini, M., Cao, H., Gonzaga-Jauregui, C., Ma, L., King, A., Rosenzweig, E., Krishnan, U., Reid, J., Overton, J., Dewey, F., Chung, W., Small, K., DeLuca, A., Cremers, F., Lewis, R., Puech, V., Bakall, B., Silva-Garcia, R., Rohrschneider, K., Leys, M., Shaya, F., Stone, E., Sobreira, N., Schiettecatte, F., Ling, H., Pugh, E., Witmer, D., Hetrick, K., Zhang, P., Doheny, K., Valle, D., Hamosh, A., Jhangiani, S., Akdemir, Z., Bainbridge, M., Charng, W., Wiszniewski, W., Gambin, T., Karaca, E., Bayram, Y., Eldomery, M., Posey, J., Doddapaneni, H., Hu, J., Sutton, V., Muzny, D., Boerwinkle, E., Valle, D., Lupski, J., Gibbs, R., Shekar, S., Salerno, W., English, A., Mangubat, A., Bruestle, J., Thorogood, A., Knoppers, B., Takahashi, H., Nitta, K., Kozhuharova, A., Suzuki, A., Sharma, H., Cotella, D., Santoro, C., Zucchelli, S., Gustincich, S., Carninci, P., Mulvihill, J., Baynam, G., Gahl, W., Groft, S., Kosaki, K., Lasko, P., Melegh, B., Taruscio, D., Ghosh, R., Plon, S., Scherer, S., Qin, X., Sanghvi, R., Walker, K., Chiang, T., Muzny, D., Wang, L., Black, J., Boerwinkle, E., Weinshilboum, R., Gibbs, R., Karpinets, T., Calderone, T., Wani, K., Yu, X., Creasy, C., Haymaker, C., Forget, M., Nanda, V., Roszik, J., Wargo, J., Haydu, L., Song, X., Lazar, A., Gershenwald, J., Davies, M., Bernatchez, C., Zhang, J., Futreal, A., Woodman, S., Chesler, E., Reynolds, T., Bubier, J., Phillips, C., Langston, M., Baker, E., Xiong, M., Ma, L., Lin, N., Amos, C., Lin, N., Wang, P., Zhu, Y., Zhao, J., Calhoun, V., Xiong, M., Dobretsberger, O., Egger, M., Leimgruber, F., Sadedin, S., Oshlack, A., Antonio, V., Ono, N., Ahmed, Z., Bolisetty, M., Zeeshan, S., Anguiano, E., Ucar, D., Sarkar, A., Nandineni, M., Zeng, C., Shao, J., Cao, H., Hastie, A., Pang, A., Lam, E., Liang, T., Pham, K., Saghbini, M., Dzakula, Z., Chee-Wei, Y., Dongsheng, L., Lai-Ping, W., Lian, D., Hee, R., Yunus, Y., Aghakhanian, F., Mokhtar, S., Lok-Yung, C., Bhak, J., Phipps, M., Shuhua, X., Yik-Ying, T., Kumar, V., Boon-Peng, H., Campbell, I., Young, M., James, P., Rain, M., Mohammad, G., Kukreti, R., Pasha, Q., Akilzhanova, A., Guelly, C., Abilova, Z., Rakhimova, S., Akhmetova, A., Kairov, U., Trajanoski, S., Zhumadilov, Z., Bekbossynova, M., Schumacher, C., Sandhu, S., Harkins, T., Makarov, V., Doddapaneni, H., Glenn, R., Momin, Z., Dilrukshi, B., Chao, H., Meng, Q., Gudenkauf, B., Kshitij, R., Jayaseelan, J., Nessner, C., Lee, S., Blankenberg, K., Lewis, L., Hu, J., Han, Y., Dinh, H., Jireh, S., Walker, K., Boerwinkle, E., Muzny, D., Gibbs, R., Hu, J., Walker, K., Buhay, C., Liu, X., Wang, Q., Sanghvi, R., Doddapaneni, H., Ding, Y., Veeraraghavan, N., Yang, Y., Boerwinkle, E., Beaudet, A., Eng, C., Muzny, D., Gibbs, R., Worley, K., Liu, Y., Hughes, D., Murali, S., Harris, R., English, A., Qin, X., Hampton, O., Larsen, P., Beck, C., Han, Y., Wang, M., Doddapaneni, H., Kovar, C., Salerno, W., Yoder, A., Richards, S., Rogers, J., Lupski, J., Muzny, D., Gibbs, R., Meng, Q., Bainbridge, M., Wang, M., Doddapaneni, H., Han, Y., Muzny, D., Gibbs, R., Harris, R., Raveenedran, M., Xue, C., Dahdouli, M., Cox, L., Fan, G., Ferguson, B., Hovarth, J., Johnson, Z., Kanthaswamy, S., Kubisch, M., Platt, M., Smith, D., Vallender, E., Wiseman, R., Liu, X., Below, J., Muzny, D., Gibbs, R., Yu, F., Rogers, J., Lin, J., Zhang, Y., Ouyang, Z., Moore, A., Wang, Z., Hofmann, J., Purdue, M., Stolzenberg-Solomon, R., Weinstein, S., Albanes, D., Liu, C., Cheng, W., Lin, T., Lan, Q., Rothman, N., Berndt, S., Chen, E., Bahrami, H., Khoshzaban, A., Keshal, S., Bahrami, H., Khoshzaban, A., Keshal, S., Alharbi, K., Zhalbinova, M., Akilzhanova, A., Rakhimova, S., Bekbosynova, M., Myrzakhmetova, S., Matar, M., Mili, N., Molinari, R., Ma, Y., Guerrier, S., Elhawary, N., Tayeb, M., Bogari, N., Qotb, N., McClymont, S., Hook, P., Goff, L., McCallion, A., Kong, Y., Charette, J., Hicks, W., Naggert, J., Zhao, L., Nishina, P., Edrees, B., Athar, M., Al-Allaf, F., Taher, M., Khan, W., Bouazzaoui, A., Harbi, N., Safar, R., Al-Edressi, H., Anazi, A., Altayeb, N., Ahmed, M., Alansary, K., Abduljaleel, Z., Kratz, A., Beguin, P., Poulain, S., Kaneko, M., Takahiko, C., Matsunaga, A., Kato, S., Suzuki, A., Bertin, N., Lassmann, T., Vigot, R., Carninci, P., Plessy, C., Launey, T., Graur, D., Lee, D., Kapoor, A., Chakravarti, A., Friis-Nielsen, J., Izarzugaza, J., Brunak, S., Chakraborty, A., Basak, J., Mukhopadhyay, A., Soibam, B., Das, D., Biswas, N., Das, S., Sarkar, S., Maitra, A., Panda, C., Majumder, P., Morsy, H., Gaballah, A., Samir, M., Shamseya, M., Mahrous, H., Ghazal, A., Arafat, W., Hashish, M., Gruber, J., Jaeger, N., Snyder, M., Patel, K., Bowman, S., Davis, T., Kraushaar, D., Emerman, A., Russello, S., Henig, N., Hendrickson, C., Zhang, K., Rodriguez-Dorantes, M., Cruz-Hernandez, C., Garcia-Tobilla, C., Solorzano-Rosales, S., Jäger, N., Chen, J., Haile, R., Hitchins, M., Brooks, J., Snyder, M., Jiménez-Morales, S., Ramírez, M., Nuñez, J., Bekker, V., Leal, Y., Jiménez, E., Medina, A., Hidalgo, A., Mejía, J., Halytskiy, V., Naggert, J., Collin, G., DeMauro, K., Hanusek, R., Nishina, P., Belhassa, K., Belhassan, K., Bouguenouch, L., Samri, I., Sayel, H., moufid, FZ., El Bouchikhi, I., Trhanint, S., Hamdaoui, H., Elotmani, I., Khtiri, I., Kettani, O., Quibibo, L., Ahagoud, M., Abbassi, M., Ouldim, K., Marusin, A., Kornetov, A., Swarovskaya, M., Vagaiceva, K., Stepanov, V., De La Paz, E., Sy, R., Nevado, J., Reganit, P., Santos, L., Magno, J., Punzalan, F., Ona, D., Llanes, E., Santos-Cortes, R., Tiongco, R., Aherrera, J., Abrahan, L., Pagauitan-Alan, P., Morelli, K., Domire, J., Pyne, N., Harper, S., Burgess, R., Zhalbinova, M., Akilzhanova, A., Rakhimova, S., Bekbosynova, M., Myrzakhmetova, S., Gari, M., Dallol, A., Alsehli, H., Gari, A., Gari, M., Abuzenadah, A., Thomas, M., Sukhai, M., Garg, S., Misyura, M., Zhang, T., Schuh, A., Stockley, T., Kamel-Reid, S., Sherry, S., Xiao, C., Slotta, D., Rodarmer, K., Feolo, M., Kimelman, M., Godynskiy, G., O’Sullivan, C., Yaschenko, E., Xiao, C., Yaschenko, E., Sherry, S., Rangel-Escareño, C., Rueda-Zarate, H., Tayubi, I., Mohammed, R., Ahmed, I., Ahmed, T., Seth, S., Amin, S., Song, X., Mao, X., Sun, H., Verhaak, R., Futreal, A., Zhang, J., Whiite, S., Chiang, T., English, A., Farek, J., Kahn, Z., Salerno, W., Veeraraghavan, N., Boerwinkle, E., Gibbs, R., Kasukawa, T., Lizio, M., Harshbarger, J., Hisashi, S., Severin, J., Imad, A., Sahin, S., Freeman, T., Baillie, K., Sandelin, A., Carninci, P., Forrest, A., Kawaji, H., Salerno, W., English, A., Shekar, S., Mangubat, A., Bruestle, J., Boerwinkle, E., Gibbs, R., Salem, A., Ali, M., Ibrahim, A., Ibrahim, M., Barrera, H., Garza, L., Torres, J., Barajas, V., Ulloa-Aguirre, A., Kershenobich, D., Mortaji, Shahroj, Guizar, Pedro, Loera, Eliezer, Moreno, Karen, De León, Adriana, Monsiváis, Daniela, Gómez, Jackeline, Cardiel, Raquel, Fernandez-Lopez, J., Bonifaz-Peña, V., Rangel-Escareño, C., Hidalgo-Miranda, A., Contreras, A., Polfus, L., Wang, X., Philip, V., Carter, G., Abuzenadah, A., Gari, M., Turki, R., Dallol, A., Uyar, A., Kaygun, A., Zaman, S., Marquez, E., George, J., Ucar, D., Hendrickson, C., Emerman, A., Kraushaar, D., Bowman, S., Henig, N., Davis, T., Russello, S., Patel, K., Starr, D., Baird, M., Kirkpatrick, B., Sheets, K., Nitsche, R., Prieto-Lafuente, L., Landrum, M., Lee, J., Rubinstein, W., Maglott, D., Thavanati, P., de Dios, A., Hernandez, R., Aldrate, M., Mejia, M., Kanala, K., Abduljaleel, Z., Khan, W., Al-Allaf, F., Athar, M., Taher, M., Shahzad, N., Bouazzaoui, A., Huber, E., Dan, A., Al-Allaf, F., Herr, W., Sprotte, G., Köstler, J., Hiergeist, A., Gessner, A., Andreesen, R., Holler, E., Al-Allaf, F., Alashwal, A., Abduljaleel, Z., Taher, M., Bouazzaoui, A., Abalkhail, H., Al-Allaf, A., Bamardadh, R., Athar, M., Filiptsova, O., Kobets, M., Kobets, Y., Burlaka, I., Timoshyna, I., Filiptsova, O., Kobets, M., Kobets, Y., Burlaka, I., Timoshyna, I., Filiptsova, O., Kobets, M., Kobets, Y., Burlaka, I., Timoshyna, I., Al-allaf, F., Mohiuddin, M., Zainularifeen, A., Mohammed, A., Abalkhail, H., Owaidah, T., and Bouazzaoui, A.
- Abstract
O1 The metabolomics approach to autism: identification of biomarkers for early detection of autism spectrum disorder A. K. Srivastava, Y. Wang, R. Huang, C. Skinner, T. Thompson, L. Pollard, T. Wood, F. Luo, R. Stevenson O2 Phenome-wide association study for smoking- and drinking-associated genes in 26,394 American women with African, Asian, European, and Hispanic descents R. Polimanti, J. Gelernter O3 Effects of prenatal environment, genotype and DNA methylation on birth weight and subsequent postnatal outcomes: findings from GUSTO, an Asian birth cohort X. Lin, I. Y. Lim, Y. Wu, A. L. Teh, L. Chen, I. M. Aris, S. E. Soh, M. T. Tint, J. L. MacIsaac, F. Yap, K. Kwek, S. M. Saw, M. S. Kobor, M. J. Meaney, K. M. Godfrey, Y. S. Chong, J. D. Holbrook, Y. S. Lee, P. D. Gluckman, N. Karnani, GUSTO study group O4 High-throughput identification of specific qt interval modulating enhancers at the SCN5A locus A. Kapoor, D. Lee, A. Chakravarti O5 Identification of extracellular matrix components inducing cancer cell migration in the supernatant of cultivated mesenchymal stem cells C. Maercker, F. Graf, M. Boutros O6 Single cell allele specific expression (ASE) IN T21 and common trisomies: a novel approach to understand DOWN syndrome and other aneuploidies G. Stamoulis, F. Santoni, P. Makrythanasis, A. Letourneau, M. Guipponi, N. Panousis, M. Garieri, P. Ribaux, E. Falconnet, C. Borel, S. E. Antonarakis O7 Role of microRNA in LCL to IPSC reprogramming S. Kumar, J. Curran, J. Blangero O8 Multiple enhancer variants disrupt gene regulatory network in Hirschsprung disease S. Chatterjee, A. Kapoor, J. Akiyama, D. Auer, C. Berrios, L. Pennacchio, A. Chakravarti O9 Metabolomic profiling for the diagnosis of neurometabolic disorders T. R. Donti, G. Cappuccio, M. Miller, P. Atwal, A. Kennedy, A. Cardon, C. Bacino, L. Emrick, J. Hertecant, F. Baumer, B. Porter, M. Bainbridge, P. Bonnen, B. Graham, R. Sutton, Q. Sun, S. Elsea O10 A novel causal methylation network approach to Alzheimer’s disease Z. Hu, P. Wang, Y. Zhu, J. Zhao, M. Xiong, David A Bennett O11 A microRNA signature identifies subtypes of triple-negative breast cancer and reveals MIR-342-3P as regulator of a lactate metabolic pathway A. Hidalgo-Miranda, S. Romero-Cordoba, S. Rodriguez-Cuevas, R. Rebollar-Vega, E. Tagliabue, M. Iorio, E. D’Ippolito, S. Baroni O12 Transcriptome analysis identifies genes, enhancer RNAs and repetitive elements that are recurrently deregulated across multiple cancer types B. Kaczkowski, Y. Tanaka, H. Kawaji, A. Sandelin, R. Andersson, M. Itoh, T. Lassmann, the FANTOM5 consortium, Y. Hayashizaki, P. Carninci, A. R. R. Forrest O13 Elevated mutation and widespread loss of constraint at regulatory and architectural binding sites across 11 tumour types C. A. Semple O14 Exome sequencing provides evidence of pathogenicity for genes implicated in colorectal cancer E. A. Rosenthal, B. Shirts, L. Amendola, C. Gallego, M. Horike-Pyne, A. Burt, P. Robertson, P. Beyers, C. Nefcy, D. Veenstra, F. Hisama, R. Bennett, M. Dorschner, D. Nickerson, J. Smith, K. Patterson, D. Crosslin, R. Nassir, N. Zubair, T. Harrison, U. Peters, G. Jarvik, NHLBI GO Exome Sequencing Project O15 The tandem duplicator phenotype as a distinct genomic configuration in cancer F. Menghi, K. Inaki, X. Woo, P. Kumar, K. Grzeda, A. Malhotra, H. Kim, D. Ucar, P. Shreckengast, K. Karuturi, J. Keck, J. Chuang, E. T. Liu O16 Modeling genetic interactions associated with molecular subtypes of breast cancer B. Ji, A. Tyler, G. Ananda, G. Carter O17 Recurrent somatic mutation in the MYC associated factor X in brain tumors H. Nikbakht, M. Montagne, M. Zeinieh, A. Harutyunyan, M. Mcconechy, N. Jabado, P. Lavigne, J. Majewski O18 Predictive biomarkers to metastatic pancreatic cancer treatment J. B. Goldstein, M. Overman, G. Varadhachary, R. Shroff, R. Wolff, M. Javle, A. Futreal, D. Fogelman O19 DDIT4 gene expression as a prognostic marker in several malignant tumors L. Bravo, W. Fajardo, H. Gomez, C. Castaneda, C. Rolfo, J. A. Pinto O20 Spatial organization of the genome and genomic alterations in human cancers K. C. Akdemir, L. Chin, A. Futreal, ICGC PCAWG Structural Alterations Group O21 Landscape of targeted therapies in solid tumors S. Patterson, C. Statz, S. Mockus O22 Genomic analysis reveals novel drivers and progression pathways in skin basal cell carcinoma S. N. Nikolaev, X. I. Bonilla, L. Parmentier, B. King, F. Bezrukov, G. Kaya, V. Zoete, V. Seplyarskiy, H. Sharpe, T. McKee, A. Letourneau, P. Ribaux, K. Popadin, N. Basset-Seguin, R. Ben Chaabene, F. Santoni, M. Andrianova, M. Guipponi, M. Garieri, C. Verdan, K. Grosdemange, O. Sumara, M. Eilers, I. Aifantis, O. Michielin, F. de Sauvage, S. Antonarakis O23 Identification of differential biomarkers of hepatocellular carcinoma and cholangiocarcinoma via transcriptome microarray meta-analysis S. Likhitrattanapisal O24 Clinical validity and actionability of multigene tests for hereditary cancers in a large multi-center study S. Lincoln, A. Kurian, A. Desmond, S. Yang, Y. Kobayashi, J. Ford, L. Ellisen O25 Correlation with tumor ploidy status is essential for correct determination of genome-wide copy number changes by SNP array T. L. Peters, K. R. Alvarez, E. F. Hollingsworth, D. H. Lopez-Terrada O26 Nanochannel based next-generation mapping for interrogation of clinically relevant structural variation A. Hastie, Z. Dzakula, A. W. Pang, E. T. Lam, T. Anantharaman, M. Saghbini, H. Cao, BioNano Genomics O27 Mutation spectrum in a pulmonary arterial hypertension (PAH) cohort and identification of associated truncating mutations in TBX4 C. Gonzaga-Jauregui, L. Ma, A. King, E. Berman Rosenzweig, U. Krishnan, J. G. Reid, J. D. Overton, F. Dewey, W. K. Chung O28 NORTH CAROLINA macular dystrophy (MCDR1): mutations found affecting PRDM13 K. Small, A. DeLuca, F. Cremers, R. A. Lewis, V. Puech, B. Bakall, R. Silva-Garcia, K. Rohrschneider, M. Leys, F. S. Shaya, E. Stone O29 PhenoDB and genematcher, solving unsolved whole exome sequencing data N. L. Sobreira, F. Schiettecatte, H. Ling, E. Pugh, D. Witmer, K. Hetrick, P. Zhang, K. Doheny, D. Valle, A. Hamosh O30 Baylor-Johns Hopkins Center for Mendelian genomics: a four year review S. N. Jhangiani, Z. Coban Akdemir, M. N. Bainbridge, W. Charng, W. Wiszniewski, T. Gambin, E. Karaca, Y. Bayram, M. K. Eldomery, J. Posey, H. Doddapaneni, J. Hu, V. R. Sutton, D. M. Muzny, E. A. Boerwinkle, D. Valle, J. R. Lupski, R. A. Gibbs O31 Using read overlap assembly to accurately identify structural genetic differences in an ashkenazi jewish trio S. Shekar, W. Salerno, A. English, A. Mangubat, J. Bruestle O32 Legal interoperability: a sine qua non for international data sharing A. Thorogood, B. M. Knoppers, Global Alliance for Genomics and Health - Regulatory and Ethics Working Group O33 High throughput screening platform of competent sineups: that can enhance translation activities of therapeutic target H. Takahashi, K. R. Nitta, A. Kozhuharova, A. M. Suzuki, H. Sharma, D. Cotella, C. Santoro, S. Zucchelli, S. Gustincich, P. Carninci O34 The undiagnosed diseases network international (UDNI): clinical and laboratory research to meet patient needs J. J. Mulvihill, G. Baynam, W. Gahl, S. C. Groft, K. Kosaki, P. Lasko, B. Melegh, D. Taruscio O36 Performance of computational algorithms in pathogenicity predictions for activating variants in oncogenes versus loss of function mutations in tumor suppressor genes R. Ghosh, S. Plon O37 Identification and electronic health record incorporation of clinically actionable pharmacogenomic variants using prospective targeted sequencing S. Scherer, X. Qin, R. Sanghvi, K. Walker, T. Chiang, D. Muzny, L. Wang, J. Black, E. Boerwinkle, R. Weinshilboum, R. Gibbs O38 Melanoma reprogramming state correlates with response to CTLA-4 blockade in metastatic melanoma T. Karpinets, T. Calderone, K. Wani, X. Yu, C. Creasy, C. Haymaker, M. Forget, V. Nanda, J. Roszik, J. Wargo, L. Haydu, X. Song, A. Lazar, J. Gershenwald, M. Davies, C. Bernatchez, J. Zhang, A. Futreal, S. Woodman O39 Data-driven refinement of complex disease classification from integration of heterogeneous functional genomics data in GeneWeaver E. J. Chesler, T. Reynolds, J. A. Bubier, C. Phillips, M. A. Langston, E. J. Baker O40 A general statistic framework for genome-based disease risk prediction M. Xiong, L. Ma, N. Lin, C. Amos O41 Integrative large-scale causal network analysis of imaging and genomic data and its application in schizophrenia studies N. Lin, P. Wang, Y. Zhu, J. Zhao, V. Calhoun, M. Xiong O42 Big data and NGS data analysis: the cloud to the rescue O. Dobretsberger, M. Egger, F. Leimgruber O43 Cpipe: a convergent clinical exome pipeline specialised for targeted sequencing S. Sadedin, A. Oshlack, Melbourne Genomics Health Alliance O44 A Bayesian classification of biomedical images using feature extraction from deep neural networks implemented on lung cancer data V. A. A. Antonio, N. Ono, Clark Kendrick C. Go O45 MAV-SEQ: an interactive platform for the Management, Analysis, and Visualization of sequence data Z. Ahmed, M. Bolisetty, S. Zeeshan, E. Anguiano, D. Ucar O47 Allele specific enhancer in EPAS1 intronic regions may contribute to high altitude adaptation of Tibetans C. Zeng, J. Shao O48 Nanochannel based next-generation mapping for structural variation detection and comparison in trios and populations H. Cao, A. Hastie, A. W. Pang, E. T. Lam, T. Liang, K. Pham, M. Saghbini, Z. Dzakula O49 Archaic introgression in indigenous populations of Malaysia revealed by whole genome sequencing Y. Chee-Wei, L. Dongsheng, W. Lai-Ping, D. Lian, R. O. Twee Hee, Y. Yunus, F. Aghakhanian, S. S. Mokhtar, C. V. Lok-Yung, J. Bhak, M. Phipps, X. Shuhua, T. Yik-Ying, V. Kumar, H. Boon-Peng O50 Breast and ovarian cancer prevention: is it time for population-based mutation screening of high risk genes? I. Campbell, M.-A. Young, P. James, Lifepool O53 Comprehensive coverage from low DNA input using novel NGS library preparation methods for WGS and WGBS C. Schumacher, S. Sandhu, T. Harkins, V. Makarov O54 Methods for large scale construction of robust PCR-free libraries for sequencing on Illumina HiSeqX platform H. DoddapaneniR. Glenn, Z. Momin, B. Dilrukshi, H. Chao, Q. Meng, B. Gudenkauf, R. Kshitij, J. Jayaseelan, C. Nessner, S. Lee, K. Blankenberg, L. Lewis, J. Hu, Y. Han, H. Dinh, S. Jireh, K. Walker, E. Boerwinkle, D. Muzny, R. Gibbs O55 Rapid capture methods for clinical sequencing J. Hu, K. Walker, C. Buhay, X. Liu, Q. Wang, R. Sanghvi, H. Doddapaneni, Y. Ding, N. Veeraraghavan, Y. Yang, E. Boerwinkle, A. L. Beaudet, C. M. Eng, D. M. Muzny, R. A. Gibbs O56 A diploid personal human genome model for better genomes from diverse sequence data K. C. C. Worley, Y. Liu, D. S. T. Hughes, S. C. Murali, R. A. Harris, A. C. English, X. Qin, O. A. Hampton, P. Larsen, C. Beck, Y. Han, M. Wang, H. Doddapaneni, C. L. Kovar, W. J. Salerno, A. Yoder, S. Richards, J. Rogers, J. R. Lupski, D. M. Muzny, R. A. Gibbs O57 Development of PacBio long range capture for detection of pathogenic structural variants Q. Meng, M. Bainbridge, M. Wang, H. Doddapaneni, Y. Han, D. Muzny, R. Gibbs O58 Rhesus macaques exhibit more non-synonymous variation but greater impact of purifying selection than humans R. A. Harris, M. Raveenedran, C. Xue, M. Dahdouli, L. Cox, G. Fan, B. Ferguson, J. Hovarth, Z. Johnson, S. Kanthaswamy, M. Kubisch, M. Platt, D. Smith, E. Vallender, R. Wiseman, X. Liu, J. Below, D. Muzny, R. Gibbs, F. Yu, J. Rogers O59 Assessing RNA structure disruption induced by single-nucleotide variation J. Lin, Y. Zhang, Z. Ouyang P1 A meta-analysis of genome-wide association studies of mitochondrial dna copy number A. Moore, Z. Wang, J. Hofmann, M. Purdue, R. Stolzenberg-Solomon, S. Weinstein, D. Albanes, C.-S. Liu, W.-L. Cheng, T.-T. Lin, Q. Lan, N. Rothman, S. Berndt P2 Missense polymorphic genetic combinations underlying down syndrome susceptibility E. S. Chen P4 The evaluation of alteration of ELAM-1 expression in the endometriosis patients H. Bahrami, A. Khoshzaban, S. Heidari Keshal P5 Obesity and the incidence of apolipoprotein E polymorphisms in an assorted population from Saudi Arabia population K. K. R. Alharbi P6 Genome-associated personalized antithrombotical therapy for patients with high risk of thrombosis and bleeding M. Zhalbinova, A. Akilzhanova, S. Rakhimova, M. Bekbosynova, S. Myrzakhmetova P7 Frequency of Xmn1 polymorphism among sickle cell carrier cases in UAE population M. Matar P8 Differentiating inflammatory bowel diseases by using genomic data: dimension of the problem and network organization N. Mili, R. Molinari, Y. Ma, S. Guerrier P9 Vulnerability of genetic variants to the risk of autism among Saudi children N. Elhawary, M. Tayeb, N. Bogari, N. Qotb P10 Chromatin profiles from ex vivo purified dopaminergic neurons establish a promising model to support studies of neurological function and dysfunction S. A. McClymont, P. W. Hook, L. A. Goff, A. McCallion P11 Utilization of a sensitized chemical mutagenesis screen to identify genetic modifiers of retinal dysplasia in homozygous Nr2e3rd7mice Y. Kong, J. R. Charette, W. L. Hicks, J. K. Naggert, L. Zhao, P. M. Nishina P12 Ion torrent next generation sequencing of recessive polycystic kidney disease in Saudi patients B. M. Edrees, M. Athar, F. A. Al-Allaf, M. M. Taher, W. Khan, A. Bouazzaoui, N. A. Harbi, R. Safar, H. Al-Edressi, A. Anazi, N. Altayeb, M. A. Ahmed, K. Alansary, Z. Abduljaleel P13 Digital expression profiling of Purkinje neurons and dendrites in different subcellular compartments A. Kratz, P. Beguin, S. Poulain, M. Kaneko, C. Takahiko, A. Matsunaga, S. Kato, A. M. Suzuki, N. Bertin, T. Lassmann, R. Vigot, P. Carninci, C. Plessy, T. Launey P14 The evolution of imperfection and imperfection of evolution: the functional and functionless fractions of the human genome D. Graur P16 Species-independent identification of known and novel recurrent genomic entities in multiple cancer patients J. Friis-Nielsen, J. M. Izarzugaza, S. Brunak P18 Discovery of active gene modules which are densely conserved across multiple cancer types reveal their prognostic power and mutually exclusive mutation patterns B. S. Soibam P19 Whole exome sequencing of dysplastic leukoplakia tissue indicates sequential accumulation of somatic mutations from oral precancer to cancer D. Das, N. Biswas, S. Das, S. Sarkar, A. Maitra, C. Panda, P. Majumder P21 Epigenetic mechanisms of carcinogensis by hereditary breast cancer genes J. J. Gruber, N. Jaeger, M. Snyder P22 RNA direct: a novel RNA enrichment strategy applied to transcripts associated with solid tumors K. Patel, S. Bowman, T. Davis, D. Kraushaar, A. Emerman, S. Russello, N. Henig, C. Hendrickson P23 RNA sequencing identifies gene mutations for neuroblastoma K. Zhang P24 Participation of SFRP1 in the modulation of TMPRSS2-ERG fusion gene in prostate cancer cell lines M. Rodriguez-Dorantes, C. D. Cruz-Hernandez, C. D. P. Garcia-Tobilla, S. Solorzano-Rosales P25 Targeted Methylation Sequencing of Prostate Cancer N. Jäger, J. Chen, R. Haile, M. Hitchins, J. D. Brooks, M. Snyder P26 Mutant TPMT alleles in children with acute lymphoblastic leukemia from México City and Yucatán, Mexico S. Jiménez-Morales, M. Ramírez, J. Nuñez, V. Bekker, Y. Leal, E. Jiménez, A. Medina, A. Hidalgo, J. Mejía P28 Genetic modifiers of Alström syndrome J. Naggert, G. B. Collin, K. DeMauro, R. Hanusek, P. M. Nishina P31 Association of genomic variants with the occurrence of angiotensin-converting-enzyme inhibitor (ACEI)-induced coughing among Filipinos E. M. Cutiongco De La Paz, R. Sy, J. Nevado, P. Reganit, L. Santos, J. D. Magno, F. E. Punzalan , D. Ona , E. Llanes, R. L. Santos-Cortes , R. Tiongco, J. Aherrera, L. Abrahan, P. Pagauitan-Alan; Philippine Cardiogenomics Study Group P32 The use of “humanized” mouse models to validate disease association of a de novo GARS variant and to test a novel gene therapy strategy for Charcot-Marie-Tooth disease type 2D K. H. Morelli, J. S. Domire, N. Pyne, S. Harper, R. Burgess P34 Molecular regulation of chondrogenic human induced pluripotent stem cells M. A. Gari, A. Dallol, H. Alsehli, A. Gari, M. Gari, A. Abuzenadah P35 Molecular profiling of hematologic malignancies: implementation of a variant assessment algorithm for next generation sequencing data analysis and clinical reporting M. Thomas, M. Sukhai, S. Garg, M. Misyura, T. Zhang, A. Schuh, T. Stockley, S. Kamel-Reid P36 Accessing genomic evidence for clinical variants at NCBI S. Sherry, C. Xiao, D. Slotta, K. Rodarmer, M. Feolo, M. Kimelman, G. Godynskiy, C. O’Sullivan, E. Yaschenko P37 NGS-SWIFT: a cloud-based variant analysis framework using control-accessed sequencing data from DBGAP/SRA C. Xiao, E. Yaschenko, S. Sherry P38 Computational assessment of drug induced hepatotoxicity through gene expression profiling C. Rangel-Escareño, H. Rueda-Zarate P40 Flowr: robust and efficient pipelines using a simple language-agnostic approach;ultraseq; fast modular pipeline for somatic variation calling using flowr S. Seth, S. Amin, X. Song, X. Mao, H. Sun, R. G. Verhaak, A. Futreal, J. Zhang P41 Applying “Big data” technologies to the rapid analysis of heterogenous large cohort data S. J. Whiite, T. Chiang, A. English, J. Farek, Z. Kahn, W. Salerno, N. Veeraraghavan, E. Boerwinkle, R. Gibbs P42 FANTOM5 web resource for the large-scale genome-wide transcription start site activity profiles of wide-range of mammalian cells T. Kasukawa, M. Lizio, J. Harshbarger, S. Hisashi, J. Severin, A. Imad, S. Sahin, T. C. Freeman, K. Baillie, A. Sandelin, P. Carninci, A. R. R. Forrest, H. Kawaji, The FANTOM Consortium P43 Rapid and scalable typing of structural variants for disease cohorts W. Salerno, A. English, S. N. Shekar, A. Mangubat, J. Bruestle, E. Boerwinkle, R. A. Gibbs P44 Polymorphism of glutathione S-transferases and sulphotransferases genes in an Arab population A. H. Salem, M. Ali, A. Ibrahim, M. Ibrahim P46 Genetic divergence of CYP3A5*3 pharmacogenomic marker for native and admixed Mexican populations J. C. Fernandez-Lopez, V. Bonifaz-Peña, C. Rangel-Escareño, A. Hidalgo-Miranda, A. V. Contreras P47 Whole exome sequence meta-analysis of 13 white blood cell, red blood cell, and platelet traits L. Polfus, CHARGE and NHLBI Exome Sequence Project Working Groups P48 Association of adipoq gene with type 2 diabetes and related phenotypes in african american men and women: The jackson heart study S. Davis, R. Xu, S. Gebeab, P Riestra, A Gaye, R. Khan, J. Wilson, A. Bidulescu P49 Common variants in casr gene are associated with serum calcium levels in koreans S. H. Jung, N. Vinayagamoorthy, S. H. Yim, Y. J. Chung P50 Inference of multiple-wave population admixture by modeling decay of linkage disequilibrium with multiple exponential functions Y. Zhou, S. Xu P51 A Bayesian framework for generalized linear mixed models in genome-wide association studies X. Wang, V. Philip, G. Carter P52 Targeted sequencing approach for the identification of the genetic causes of hereditary hearing impairment A. A. Abuzenadah, M. Gari, R. Turki, A. Dallol P53 Identification of enhancer sequences by ATAC-seq open chromatin profiling A. Uyar, A. Kaygun, S. Zaman, E. Marquez, J. George, D. Ucar P54 Direct enrichment for the rapid preparation of targeted NGS libraries C. L. Hendrickson, A. Emerman, D. Kraushaar, S. Bowman, N. Henig, T. Davis, S. Russello, K. Patel P56 Performance of the Agilent D5000 and High Sensitivity D5000 ScreenTape assays for the Agilent 4200 Tapestation System R. Nitsche, L. Prieto-Lafuente P57 ClinVar: a multi-source archive for variant interpretation M. Landrum, J. Lee, W. Rubinstein, D. Maglott P59 Association of functional variants and protein physical interactions of human MUTY homolog linked with familial adenomatous polyposis and colorectal cancer syndrome Z. Abduljaleel, W. Khan, F. A. Al-Allaf, M. Athar , M. M. Taher, N. Shahzad P60 Modification of the microbiom constitution in the gut using chicken IgY antibodies resulted in a reduction of acute graft-versus-host disease after experimental bone marrow transplantation A. Bouazzaoui, E. Huber, A. Dan, F. A. Al-Allaf, W. Herr, G. Sprotte, J. Köstler, A. Hiergeist, A. Gessner, R. Andreesen, E. Holler P61 Compound heterozygous mutation in the LDLRgene in Saudi patients suffering severe hypercholesterolemia F. Al-Allaf, A. Alashwal, Z. Abduljaleel, M. Taher, A. Bouazzaoui, H. Abalkhail, A. Al-Allaf, R. Bamardadh, M. Athar
- Published
- 2016
- Full Text
- View/download PDF
13. β-subunits do not reproduce strong temperature dependency of human transient outward current Ito
- Author
-
Radicke, S., Cotella, D., Ravens, U., and Wettwer, E.
- Published
- 2006
- Full Text
- View/download PDF
14. Human genome meeting 2016
- Author
-
Srivastava, A. K., Wang, Y., Huang, R., Skinner, C., Thompson, T., Pollard, L., Wood, T., Luo, F., Stevenson, R., Polimanti, R., Gelernter, J., Lin, X., Lim, I. Y., Wu, Y., Teh, A. L., Chen, L., Aris, I. M., Soh, S. E., Tint, M. T., MacIsaac, J. L., Yap, F., Kwek, K., Saw, S. M., Kobor, M. S., Meaney, M. J., Godfrey, K. M., Chong, Y. S., Holbrook, J. D., Lee, Y. S., Gluckman, P. D., Karnani, N., Kapoor, A., Lee, D., Chakravarti, A., Maercker, C., Graf, F., Boutros, M., Stamoulis, G., Santoni, F., Makrythanasis, P., Letourneau, A., Guipponi, M., Panousis, N., Garieri, M., Ribaux, P., Falconnet, E., Borel, C., Antonarakis, S. E., Kumar, S., Curran, J., Blangero, J., Chatterjee, S., Akiyama, J., Auer, D., Berrios, C., Pennacchio, L., Donti, T. R., Cappuccio, G., Miller, M., Atwal, P., Kennedy, A., Cardon, A., Bacino, C., Emrick, L., Hertecant, J., Baumer, F., Porter, B., Bainbridge, M., Bonnen, P., Graham, B., Sutton, R., Sun, Q., Elsea, S., Hu, Z., Wang, P., Zhu, Y., Zhao, J., Xiong, M., Bennett, David A., Hidalgo-Miranda, A., Romero-Cordoba, S., Rodriguez-Cuevas, S., Rebollar-Vega, R., Tagliabue, E., Iorio, M., D’Ippolito, E., Baroni, S., Kaczkowski, B., Tanaka, Y., Kawaji, H., Sandelin, A., Andersson, R., Itoh, M., Lassmann, T., Hayashizaki, Y., Carninci, P., Forrest, A. R. R., Semple, C. A., Rosenthal, E. A., Shirts, B., Amendola, L., Gallego, C., Horike-Pyne, M., Burt, A., Robertson, P., Beyers, P., Nefcy, C., Veenstra, D., Hisama, F., Bennett, R., Dorschner, M., Nickerson, D., Smith, J., Patterson, K., Crosslin, D., Nassir, R., Zubair, N., Harrison, T., Peters, U., Jarvik, G., Menghi, F., Inaki, K., Woo, X., Kumar, P., Grzeda, K., Malhotra, A., Kim, H., Ucar, D., Shreckengast, P., Karuturi, K., Keck, J., Chuang, J., Liu, E. T., Ji, B., Tyler, A., Ananda, G., Carter, G., Nikbakht, H., Montagne, M., Zeinieh, M., Harutyunyan, A., Mcconechy, M., Jabado, N., Lavigne, P., Majewski, J., Goldstein, J. B., Overman, M., Varadhachary, G., Shroff, R., Wolff, R., Javle, M., Futreal, A., Fogelman, D., Bravo, L., Fajardo, W., Gomez, H., Castaneda, C., Rolfo, C., Pinto, J. A., Akdemir, K. C., Chin, L., Patterson, S., Statz, C., Mockus, S., Nikolaev, S. N., Bonilla, X. I., Parmentier, L., King, B., Bezrukov, F., Kaya, G., Zoete, V., Seplyarskiy, V., Sharpe, H., McKee, T., Popadin, K., Basset-Seguin, N., Chaabene, R. Ben, Andrianova, M., Verdan, C., Grosdemange, K., Sumara, O., Eilers, M., Aifantis, I., Michielin, O., de Sauvage, F., Antonarakis, S., Likhitrattanapisal, S., Lincoln, S., Kurian, A., Desmond, A., Yang, S., Kobayashi, Y., Ford, J., Ellisen, L., Peters, T. L., Alvarez, K. R., Hollingsworth, E. F., Lopez-Terrada, D. H., Hastie, A., Dzakula, Z., Pang, A. W., Lam, E. T., Anantharaman, T., Saghbini, M., Cao, H., Gonzaga-Jauregui, C., Ma, L., King, A., Rosenzweig, E. Berman, Krishnan, U., Reid, J. G., Overton, J. D., Dewey, F., Chung, W. K., Small, K., DeLuca, A., Cremers, F., Lewis, R. A., Puech, V., Bakall, B., Silva-Garcia, R., Rohrschneider, K., Leys, M., Shaya, F. S., Stone, E., Sobreira, N. L., Schiettecatte, F., Ling, H., Pugh, E., Witmer, D., Hetrick, K., Zhang, P., Doheny, K., Valle, D., Hamosh, A., Jhangiani, S. N., Akdemir, Z. Coban, Bainbridge, M. N., Charng, W., Wiszniewski, W., Gambin, T., Karaca, E., Bayram, Y., Eldomery, M. K., Posey, J., Doddapaneni, H., Hu, J., Sutton, V. R., Muzny, D. M., Boerwinkle, E. A., Lupski, J. R., Gibbs, R. A., Shekar, S., Salerno, W., English, A., Mangubat, A., Bruestle, J., Thorogood, A., Knoppers, B. M., Takahashi, H., Nitta, K. R., Kozhuharova, A., Suzuki, A. M., Sharma, H., Cotella, D., Santoro, C., Zucchelli, S., Gustincich, S., Mulvihill, J. J., Baynam, G., Gahl, W., Groft, S. C., Kosaki, K., Lasko, P., Melegh, B., Taruscio, D., Ghosh, R., Plon, S., Scherer, S., Qin, X., Sanghvi, R., Walker, K., Chiang, T., Muzny, D., Wang, L., Black, J., Boerwinkle, E., Weinshilboum, R., Gibbs, R., Karpinets, T., Calderone, T., Wani, K., Yu, X., Creasy, C., Haymaker, C., Forget, M., Nanda, V., Roszik, J., Wargo, J., Haydu, L., Song, X., Lazar, A., Gershenwald, J., Davies, M., Bernatchez, C., Zhang, J., Woodman, S., Chesler, E. J., Reynolds, T., Bubier, J. A., Phillips, C., Langston, M. A., Baker, E. J., Lin, N., Amos, C., Calhoun, V., Dobretsberger, O., Egger, M., Leimgruber, F., Sadedin, S., Oshlack, A., Antonio, V. A. A., Ono, N., Ahmed, Z., Bolisetty, M., Zeeshan, S., Anguiano, E., Sarkar, A., Nandineni, M. R., Zeng, C., Shao, J., Liang, T., Pham, K., Chee-Wei, Y., Dongsheng, L., Lai-Ping, W., Lian, D., Hee, R. O. Twee, Yunus, Y., Aghakhanian, F., Mokhtar, S. S., Lok-Yung, C. V., Bhak, J., Phipps, M., Shuhua, X., Yik-Ying, T., Kumar, V., Boon-Peng, H., Campbell, I., Young, M. -A., James, P., Rain, M., Mohammad, G., Kukreti, R., Pasha, Q., Akilzhanova, A. R., Guelly, C., Abilova, Z., Rakhimova, S., Akhmetova, A., Kairov, U., Trajanoski, S., Zhumadilov, Z., Bekbossynova, M., Schumacher, C., Sandhu, S., Harkins, T., Makarov, V., Glenn, R., Momin, Z., Dilrukshi, B., Chao, H., Meng, Q., Gudenkauf, B., Kshitij, R., Jayaseelan, J., Nessner, C., Lee, S., Blankenberg, K., Lewis, L., Han, Y., Dinh, H., Jireh, S., Buhay, C., Liu, X., Wang, Q., Ding, Y., Veeraraghavan, N., Yang, Y., Beaudet, A. L., Eng, C. M., Worley, K. C. C., Liu, Y., Hughes, D. S. T., Murali, S. C., Harris, R. A., English, A. C., Hampton, O. A., Larsen, P., Beck, C., Wang, M., Kovar, C. L., Salerno, W. J., Yoder, A., Richards, S., Rogers, J., Raveenedran, M., Xue, C., Dahdouli, M., Cox, L., Fan, G., Ferguson, B., Hovarth, J., Johnson, Z., Kanthaswamy, S., Kubisch, M., Platt, M., Smith, D., Vallender, E., Wiseman, R., Below, J., Yu, F., Lin, J., Zhang, Y., Ouyang, Z., Moore, A., Wang, Z., Hofmann, J., Purdue, M., Stolzenberg-Solomon, R., Weinstein, S., Albanes, D., Liu, C. S., Cheng, W. L., Lin, T. T., Lan, Q., Rothman, N., Berndt, S., Chen, E. S., Bahrami, H., Khoshzaban, A., Keshal, S. Heidari, Alharbi, K. K. R., Zhalbinova, M., Akilzhanova, A., Bekbosynova, M., Myrzakhmetova, S., Matar, M., Mili, N., Molinari, R., Ma, Y., Guerrier, S., Elhawary, N., Tayeb, M., Bogari, N., Qotb, N., McClymont, S. A., Hook, P. W., Goff, L. A., McCallion, A., Kong, Y., Charette, J. R., Hicks, W. L., Naggert, J. K., Zhao, L., Nishina, P. M., Edrees, B. M., Athar, M., Al-Allaf, F. A., Taher, M. M., Khan, W., Bouazzaoui, A., Harbi, N. A., Safar, R., Al-Edressi, H., Anazi, A., Altayeb, N., Ahmed, M. A., Alansary, K., Abduljaleel, Z., Kratz, A., Beguin, P., Poulain, S., Kaneko, M., Takahiko, C., Matsunaga, A., Kato, S., Bertin, N., Vigot, R., Plessy, C., Launey, T., Graur, D., Friis-Nielsen, J., Izarzugaza, J. M., Brunak, S., Chakraborty, A., Basak, J., Mukhopadhyay, A., Soibam, B. S., Das, D., Biswas, N., Das, S., Sarkar, S., Maitra, A., Panda, C., Majumder, P., Morsy, H., Gaballah, A., Samir, M., Shamseya, M., Mahrous, H., Ghazal, A., Arafat, W., Hashish, M., Gruber, J. J., Jaeger, N., Snyder, M., Patel, K., Bowman, S., Davis, T., Kraushaar, D., Emerman, A., Russello, S., Henig, N., Hendrickson, C., Zhang, K., Rodriguez-Dorantes, M., Cruz-Hernandez, C. D., Garcia-Tobilla, C. D. P., Solorzano-Rosales, S., Jäger, N., Chen, J., Haile, R., Hitchins, M., Brooks, J. D., Jiménez-Morales, S., Ramírez, M., Nuñez, J., Bekker, V., Leal, Y., Jiménez, E., Medina, A., Hidalgo, A., Mejía, J., Halytskiy, V., Naggert, J., Collin, G. B., DeMauro, K., Hanusek, R., Belhassa, K., Belhassan, K., Bouguenouch, L., Samri, I., Sayel, H., moufid, FZ., El Bouchikhi, I., Trhanint, S., Hamdaoui, H., Elotmani, I., Khtiri, I., Kettani, O., Quibibo, L., Ahagoud, M., Abbassi, M., Ouldim, K., Marusin, A. V., Kornetov, A. N., Swarovskaya, M., Vagaiceva, K., Stepanov, V., De La Paz, E. M. Cutiongco, Sy, R., Nevado, J., Reganit, P., Santos, L., Magno, J. D., Punzalan, F. E., Ona, D., Llanes, E., Santos-Cortes, R. L., Tiongco, R., Aherrera, J., Abrahan, L., Pagauitan-Alan, P., Morelli, K. H., Domire, J. S., Pyne, N., Harper, S., Burgess, R., Gari, M. A., Dallol, A., Alsehli, H., Gari, A., Gari, M., Abuzenadah, A., Thomas, M., Sukhai, M., Garg, S., Misyura, M., Zhang, T., Schuh, A., Stockley, T., Kamel-Reid, S., Sherry, S., Xiao, C., Slotta, D., Rodarmer, K., Feolo, M., Kimelman, M., Godynskiy, G., O’Sullivan, C., Yaschenko, E., Rangel-Escareño, C., Rueda-Zarate, H., Tayubi, I. A., Mohammed, R., Ahmed, I., Ahmed, T., Seth, S., Amin, S., Mao, X., Sun, H., Verhaak, R. G., Whiite, S. J., Farek, J., Kahn, Z., Kasukawa, T., Lizio, M., Harshbarger, J., Hisashi, S., Severin, J., Imad, A., Sahin, S., Freeman, T. C., Baillie, K., Shekar, S. N., Salem, A. H., Ali, M., Ibrahim, A., Ibrahim, M., Barrera, H. A., Garza, L., Torres, J. A., Barajas, V., Ulloa-Aguirre, A., Kershenobich, D., Mortaji, Shahroj, Guizar, Pedro, Loera, Eliezer, Moreno, Karen, De León, Adriana, Monsiváis, Daniela, Gómez, Jackeline, Cardiel, Raquel, Fernandez-Lopez, J. C., Bonifaz-Peña, V., Contreras, A. V., Polfus, L., Wang, X., Philip, V., Abuzenadah, A. A., Turki, R., Uyar, A., Kaygun, A., Zaman, S., Marquez, E., George, J., Hendrickson, C. L., Starr, D. B., Baird, M., Kirkpatrick, B., Sheets, K., Nitsche, R., Prieto-Lafuente, L., Landrum, M., Lee, J., Rubinstein, W., Maglott, D., Thavanati, P. K. R., de Dios, A. Escoto, Hernandez, R. E. Navarro, Aldrate, M. E. Aguilar, Mejia, M. R. Ruiz, Kanala, K. R. R., Shahzad, N., Huber, E., Dan, A., Herr, W., Sprotte, G., Köstler, J., Hiergeist, A., Gessner, A., Andreesen, R., Holler, E., Al-Allaf, F., Alashwal, A., Taher, M., Abalkhail, H., Al-Allaf, A., Bamardadh, R., Filiptsova, O., Kobets, M., Kobets, Y., Burlaka, I., Timoshyna, I., Kobets, M. N., Al-allaf, F. A., Mohiuddin, M. T., Zainularifeen, A., Mohammed, A., and Owaidah, T.
- Full Text
- View/download PDF
15. Interaction of DPP10a with Kv4.3 channel complex results in a sustained current component of human transient outward current Ito.
- Author
-
Turnow, K., Metzner, K., Cotella, D., Morales, M. J., Schaefer, M., Christ, T., Ravens, U., Wettwer, E., and Kämmerer, S.
- Abstract
The sustained component of the K+ outward current in human atrial myocytes is believed to be due to the slowly inactivating ultra-rapid potassium current I Kur and not to the fast inactivating transient outward current I to. Here we provide evidence for contribution of I to to this late current due to the effects of dipeptidyl peptidase-like protein (DPP) 10 (DPP10a) interacting with Kv4.3 channels. We studied the late current component of I to in human atrial myocytes and CHO cells co-expressing Kv4.3 or Kv4.3/KChIP2 (control) and DPP proteins using voltage-clamp technique and a pharmacological approach. A voltage dependent and slowly inactivating late current (43 % of peak amplitude) could be observed in atrial myocytes. We found a similar current in CHO cells expressing Kv4.3/KChIP2 + DPP10a, but not in cells co-expressing Kv4.3 + DPP or Kv4.3/KChIP2 + DPP6-S. Assuming that DPP10a influences atrial I to, we detected DPP10 expression of three alternatively spliced mRNAs, DPP10 protein and colocalization of Kv4.3 and DPP10 proteins in human atrial myocytes. DPP10a did not affect properties of expressed Kv1.5 excluding a contribution to the sustained I Kur in atrial cells. To test for the contribution of Kv4-based I to on sustained K+ outward currents in human atrial myocytes, we used 4-AP to block I Kur, in combination with Heteropoda toxin 2 to block Kv4 channels. We could clearly separate an I to fraction of about 19 % contributing to the late current in atrial myocytes. Thus, the interaction of DPP10a, expressed in human atrium, with Kv4.3 channels generates a sustained current component of I to, which may affect late repolarization phase of atrial action potentials. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
16. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs
- Author
-
Francesca Fasolo, Remo Sanges, Piero Carninci, Francesca Persichetti, Flavio Mignone, Silvia Zucchelli, Claudio Santoro, Laura Patrucco, Clelia Peano, Carlotta Bon, Diego Cotella, Stefano Gustincich, Massimiliano Volpe, Daniele Sblattero, Fasolo, F., Patrucco, L., Volpe, M., Bon, C., Peano, C., Mignone, F., Carninci, P., Persichetti, F., Santoro, C., Zucchelli, S., Sblattero, D., Sanges, R., Cotella, D., and Gustincich, S.
- Subjects
0301 basic medicine ,Transposable element ,RNA-binding protein ,Computational biology ,Biology ,Biochemistry ,Domain (software engineering) ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Settore BIO/13 - Biologia Applicata ,Genetics ,Animals ,Humans ,Protein Interaction Domains and Motifs ,RNA, Antisense ,RNA, Messenger ,long noncoding RNA ,RIDome ,Nuclear Factor 90 Proteins ,Molecular Biology ,Research ,food and beverages ,Computational Biology ,Long non-coding RNA ,High-Throughput Screening Assays ,030104 developmental biology ,Protein Biosynthesis ,DNA Transposable Elements ,RNA, Long Noncoding ,Mammalian genome ,Ubiquitin Thiolesterase ,030217 neurology & neurosurgery ,Biotechnology - Abstract
Transposable elements (TEs) compose about half of the mammalian genome and, as embedded sequences, up to 40% of long noncoding RNA (lncRNA) transcripts. Embedded TEs may represent functional domains within lncRNAs, providing a structured RNA platform for protein interaction. Here we show the interactome profile of the mouse inverted short interspersed nuclear element (SINE) of subfamily B2 (invSINEB2) alone and embedded in antisense (AS) ubiquitin C-terminal hydrolase L1 (Uchl1), an lncRNA that is AS to Uchl1 gene. AS Uchl1 is the representative member of a functional class of AS lncRNAs, named SINEUPs, in which the invSINEB2 acts as effector domain (ED)-enhancing translation of sense protein-coding mRNAs. By using RNA-interacting domainome technology, we identify the IL enhancer-binding factor 3 (ILF3) as a protein partner of AS Uchl1 RNA. We determine that this interaction is mediated by the RNA-binding motif 2 of ILF3 and the invSINEB2. Furthermore, we show that ILF3 is able to bind a free right Arthrobacter luteus (Alu) monomer sequence, the embedded TE acting as ED in human SINEUPs. Bioinformatic analysis of Encyclopedia of DNA Elements-enhanced cross-linking immunoprecipitation data reveals that ILF3 binds transcribed human SINE sequences at transcriptome-wide levels. We then demonstrate that the embedded TEs modulate AS Uchl1 RNA nuclear localization to an extent moderately influenced by ILF3. This work unveils the existence of a specific interaction between embedded TEs and an RNA-binding protein, strengthening the model of TEs as functional modules in lncRNAs.-Fasolo, F., Patrucco, L., Volpe, M., Bon, C., Peano, C., Mignone, F., Carninci, P., Persichetti, F., Santoro, C., Zucchelli, S., Sblattero, D., Sanges, R., Cotella, D., Gustincich, S. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs.
- Published
- 2019
17. High-throughput assessment of the antibody profile in ovarian cancer ascitic fluids
- Author
-
Maria Felicia Soluri, Fulvio Adorni, Paolo Macor, Claudio Santoro, Frank Antony, Francesco Raspagliesi, Daniele Sblattero, Yari Ciani, Cecilia Deantonio, Silvano Piazza, Diego Cotella, Delia Mezzanzanica, Olga Tarasiuk, Antony, F., Deantonio, C., Cotella, D., Soluri, M. F., Tarasiuk, O., Raspagliesi, F., Adorni, F., Piazza, S., Ciani, Y., Santoro, C., Macor, P., Mezzanzanica, D., and Sblattero, D.
- Subjects
lcsh:Immunologic diseases. Allergy ,0301 basic medicine ,Phage display ,tumor-associated antigen ,ascite ,biomarker ,Ovarian cancer ,protein microarray ,Immunology ,Biopanning ,lcsh:RC254-282 ,03 medical and health sciences ,0302 clinical medicine ,Antigen ,medicine ,Immunology and Allergy ,Original Research ,biology ,business.industry ,Autoantibody ,Cancer ,lcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,medicine.disease ,030104 developmental biology ,Oncology ,030220 oncology & carcinogenesis ,Cancer research ,Protein microarray ,biology.protein ,Antibody ,lcsh:RC581-607 ,business - Abstract
The identification of effective biomarkers for early diagnosis, prognosis, and response to treatments remains a challenge in ovarian cancer (OC) research. Here, we present an unbiased high-throughput approach to profile ascitic fluid autoantibodies in order to obtain a tumor-specific antigen signature in OC. We first reported the reactivity of immunoglobulins (Igs) purified from OC patient ascites towards two different OC cell lines. Using a discovery set of Igs, we selected tumor-specific antigens from a phage display cDNA library. After biopanning, 700 proteins were expressed as fusion protein and used in protein array to enable large-scale immunoscreening with independent sets of cancer and noncancerous control. Finally, the selected antigens were validated by ELISA. The initial screening identified eight antigenic clones: CREB3, MRPL46, EXOSC10, BCOR, HMGN2, HIP1R, OLFM4, and KIAA1755. These antigens were all validated by ELISA in a study involving ascitic Igs from 153 patients (69 with OC, 34 with other cancers and 50 without cancer), with CREB3 showing the highest sensitivity (86.95%) and specificity (98%). Notably, we were able to identify an association between the tumor-associated (TA) antibody response and the response to a first-line tumor treatment (platinum-based chemotherapy). A stronger association was found by combining three antigens (BCOR, CREB3, and MRLP46) as a single antibody signature. Measurement of an ascitic fluid antibody response to multiple TA antigens may aid in the identification of new prognostic signatures in OC patients and shift attention to new potentially relevant targets.
- Published
- 2019
18. SINEUPs: A new class of natural and synthetic antisense long non-coding RNAs that activate translation
- Author
-
M. H. Jones, Hazuki Takahashi, Piero Carninci, Remo Sanges, Francesca Fasolo, Daniele Sblattero, Francesca Persichetti, Claudia Carrieri, Claudio Santoro, Stefano Gustincich, Diego Cotella, Laura Cimatti, Silvia Zucchelli, Zucchelli, S., Cotella, D., Takahashi, H., Carrieri, C., Cimatti, L., Fasolo, Francesca, Jones, M. H., Sblattero, Daniele, Sanges, R., Santoro, C., Persichetti, Francesca, Carninci, Piero, and Gustincich, Stefano
- Subjects
Translation ,protein synthesis ,transposon ,complementary RNA ,Embedded repetitive element ,Genome ,Transcription (biology) ,Settore BIO/13 - Biologia Applicata ,Sense (molecular biology) ,Protein biosynthesis ,molecular biology ,Point-of-View ,RNA structure ,Genetics ,messenger RNA ,article ,RNA therapeutic ,Embedded repetitive elements ,protein function ,Long non-coding RNA ,Antisense RNA ,unclassified drug ,genetic code ,Antisense transcript ,RNA, Long Noncoding ,Transposable element ,Transcripts NATs ,long untranslated RNA ,Computational biology ,Biology ,translation initiation ,SINEUP ,Protein production ,Animals ,Humans ,RNA, Antisense ,RNA, Messenger ,human ,Gene ,Molecular Biology ,protein expression ,Repetitive Sequences, Nucleic Acid ,Binding Sites ,nonhuman ,Models, Genetic ,Antisense transcript, Embedded repetitive elements, Long non-coding RNA, Protein production, RNA therapeutics, SINEUP, Translation, complementary RNA, long untranslated RNA, messenger RNA, protein, SINEUP, unclassified drug, article, gene expression, genetic code, haploinsufficiency, human, molecular biology, nonhuman, protein expression, protein function, protein synthesis, RNA structure, translation initiation, transposon, upregulation ,RNA therapeutics ,Cell Biology ,haploinsufficiency ,Genes ,Protein Biosynthesis ,gene expression ,protein ,upregulation - Abstract
Over the past 10 years, it has emerged that pervasive transcription in mammalian genomes has a tremendous impact on several biological functions. Most of transcribed RNAs are lncRNAs and repetitive elements. In this review, we will detail the discovery of a new functional class of natural and synthetic antisense lncRNAs that stimulate translation of sense mRNAs. These molecules have been named SINEUPs since their function requires the activity of an embedded inverted SINEB2 sequence to UP-regulate translation. Natural SINEUPs suggest that embedded Transposable Elements may represent functional domains in long non-coding RNAs. Synthetic SINEUPs may be designed by targeting the antisense sequence to the mRNA of choice representing the first scalable tool to increase protein synthesis of potentially any gene of interest. We will discuss potential applications of SINEUP technology in the field of molecular biology experiments, in protein manufacturing as well as in therapy of haploinsufficiencies.
- Published
- 2015
19. Cardiac Differentiation Promotes Focal Adhesions Assembly through Vinculin Recruitment.
- Author
-
Carton F, Casarella S, Di Francesco D, Zanella E, D'urso A, Di Nunno L, Fusaro L, Cotella D, Prat M, Follenzi A, and Boccafoschi F
- Subjects
- Vinculin metabolism, Cell Adhesion physiology, Cell Membrane metabolism, Focal Adhesion Protein-Tyrosine Kinases metabolism, Focal Adhesion Kinase 1 metabolism, Cell Differentiation, Focal Adhesions metabolism
- Abstract
Cells of the cardiovascular system are physiologically exposed to a variety of mechanical forces fundamental for both cardiac development and functions. In this context, forces generated by actomyosin networks and those transmitted through focal adhesion (FA) complexes represent the key regulators of cellular behaviors in terms of cytoskeleton dynamism, cell adhesion, migration, differentiation, and tissue organization. In this study, we investigated the involvement of FAs on cardiomyocyte differentiation. In particular, vinculin and focal adhesion kinase (FAK) family, which are known to be involved in cardiac differentiation, were studied. Results revealed that differentiation conditions induce an upregulation of both FAK-Tyr397 and vinculin, resulting also in the translocation to the cell membrane. Moreover, the role of mechanical stress in contractile phenotype expression was investigated by applying a uniaxial mechanical stretching (5% substrate deformation, 1 Hz frequency). Morphological evaluation revealed that the cell shape showed a spindle shape and reoriented following the stretching direction. Substrate deformation resulted also in modification of the length and the number of vinculin-positive FAs. We can, therefore, suggest that mechanotransductive pathways, activated through FAs, are highly involved in cardiomyocyte differentiation, thus confirming their role during cytoskeleton rearrangement and cardiac myofilament maturation.
- Published
- 2023
- Full Text
- View/download PDF
20. SINEUPs: a novel toolbox for RNA therapeutics.
- Author
-
Espinoza S, Bon C, Valentini P, Pierattini B, Matey AT, Damiani D, Pulcrano S, Sanges R, Persichetti F, Takahashi H, Carninci P, Santoro C, Cotella D, and Gustincich S
- Subjects
- Animals, Mice, Proteins metabolism, RNA, Antisense genetics, RNA, Antisense metabolism, RNA, Messenger genetics, RNA, Messenger metabolism, Protein Biosynthesis, RNA, Long Noncoding chemistry
- Abstract
RNA molecules have emerged as a new class of promising therapeutics to expand the range of druggable targets in the genome. In addition to 'canonical' protein-coding mRNAs, the emerging richness of sense and antisense long non-coding RNAs (lncRNAs) provides a new reservoir of molecular tools for RNA-based drugs. LncRNAs are composed of modular structural domains with specific activities involving the recruitment of protein cofactors or directly interacting with nucleic acids. A single therapeutic RNA transcript can then be assembled combining domains with defined secondary structures and functions, and antisense sequences specific for the RNA/DNA target of interest. As the first representative molecules of this new pharmacology, we have identified SINEUPs, a new functional class of natural antisense lncRNAs that increase the translation of partially overlapping mRNAs. Their activity is based on the combination of two domains: an embedded mouse inverted SINEB2 element that enhances mRNA translation (effector domain) and an overlapping antisense region that provides specificity for the target sense transcript (binding domain). By genetic engineering, synthetic SINEUPs can potentially target any mRNA of interest increasing translation and therefore the endogenous level of the encoded protein. In this review, we describe the state-of-the-art knowledge of SINEUPs and discuss recent publications showing their potential application in diseases where a physiological increase of endogenous protein expression can be therapeutic., (© 2021 The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
21. Myogenic Potential of Extracellular Matrix Derived from Decellularized Bovine Pericardium.
- Author
-
Carton F, Di Francesco D, Fusaro L, Zanella E, Apostolo C, Oltolina F, Cotella D, Prat M, and Boccafoschi F
- Subjects
- Animals, Cattle, Hydrogels chemistry, Mice, Tissue Scaffolds chemistry, Cell Differentiation, Extracellular Matrix physiology, Muscle Development, Myoblasts cytology, Pericardium cytology, Tissue Engineering methods
- Abstract
Skeletal muscles represent 40% of body mass and its native regenerative capacity can be permanently lost after a traumatic injury, congenital diseases, or tumor ablation. The absence of physiological regeneration can hinder muscle repair preventing normal muscle tissue functions. To date, tissue engineering (TE) represents one promising option for treating muscle injuries and wasting. In particular, hydrogels derived from the decellularized extracellular matrix (dECM) are widely investigated in tissue engineering applications thanks to their essential role in guiding muscle regeneration. In this work, the myogenic potential of dECM substrate, obtained from decellularized bovine pericardium (Tissuegraft Srl), was evaluated in vitro using C2C12 murine muscle cells. To assess myotubes formation, the width, length, and fusion indexes were measured during the differentiation time course. Additionally, the ability of dECM to support myogenesis was assessed by measuring the expression of specific myogenic markers: α-smooth muscle actin (α-sma), myogenin, and myosin heavy chain (MHC). The results obtained suggest that the dECM niche was able to support and enhance the myogenic potential of C2C12 cells in comparison of those grown on a plastic standard surface. Thus, the use of extracellular matrix proteins, as biomaterial supports, could represent a promising therapeutic strategy for skeletal muscle tissue engineering.
- Published
- 2021
- Full Text
- View/download PDF
22. Angiogenic Potential in Biological Hydrogels.
- Author
-
Giraudo MV, Di Francesco D, Catoira MC, Cotella D, Fusaro L, and Boccafoschi F
- Abstract
Hydrogels are three-dimensional (3D) materials able to absorb and retain water in large amounts while maintaining their structural stability. Due to their considerable biocompatibility and similarity with the body's tissues, hydrogels are one of the most promising groups of biomaterials. The main application of these hydrogels is in regenerative medicine, in which they allow the formation of an environment suitable for cell differentiation and growth. Deriving from these hydrogels, it is, therefore, possible to obtain bioactive materials that can regenerate tissues. Because vessels guarantee the right amount of oxygen and nutrients but also assure the elimination of waste products, angiogenesis is one of the processes at the base of the regeneration of a tissue. On the other hand, it is a very complex mechanism and the parameters to consider are several. Indeed, the factors and the cells involved in this process are numerous and, for this reason, it has been a challenge to recreate a biomaterial able to adequately sustain the angiogenic process. However, in this review the focal point is the application of natural hydrogels in angiogenesis enhancing and their potential to guide this process.
- Published
- 2020
- Full Text
- View/download PDF
23. InteractomeSeq: a web server for the identification and profiling of domains and epitopes from phage display and next generation sequencing data.
- Author
-
Puccio S, Grillo G, Consiglio A, Soluri MF, Sblattero D, Cotella D, Santoro C, Liuni S, Bellis G, Lugli E, Peano C, and Licciulli F
- Subjects
- Bacteriophages genetics, Internet, Cell Surface Display Techniques, Epitopes, High-Throughput Nucleotide Sequencing, Protein Domains, Software
- Abstract
High-Throughput Sequencing technologies are transforming many research fields, including the analysis of phage display libraries. The phage display technology coupled with deep sequencing was introduced more than a decade ago and holds the potential to circumvent the traditional laborious picking and testing of individual phage rescued clones. However, from a bioinformatics point of view, the analysis of this kind of data was always performed by adapting tools designed for other purposes, thus not considering the noise background typical of the 'interactome sequencing' approach and the heterogeneity of the data. InteractomeSeq is a web server allowing data analysis of protein domains ('domainome') or epitopes ('epitome') from either Eukaryotic or Prokaryotic genomic phage libraries generated and selected by following an Interactome sequencing approach. InteractomeSeq allows users to upload raw sequencing data and to obtain an accurate characterization of domainome/epitome profiles after setting the parameters required to tune the analysis. The release of this tool is relevant for the scientific and clinical community, because InteractomeSeq will fill an existing gap in the field of large-scale biomarkers profiling, reverse vaccinology, and structural/functional studies, thus contributing essential information for gene annotation or antigen identification. InteractomeSeq is freely available at https://InteractomeSeq.ba.itb.cnr.it/., (© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2020
- Full Text
- View/download PDF
24. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs.
- Author
-
Fasolo F, Patrucco L, Volpe M, Bon C, Peano C, Mignone F, Carninci P, Persichetti F, Santoro C, Zucchelli S, Sblattero D, Sanges R, Cotella D, and Gustincich S
- Subjects
- Animals, Computational Biology, High-Throughput Screening Assays, Humans, Mice, Nuclear Factor 90 Proteins genetics, Protein Biosynthesis, Protein Interaction Domains and Motifs, RNA, Long Noncoding genetics, RNA, Messenger genetics, Ubiquitin Thiolesterase genetics, DNA Transposable Elements, Nuclear Factor 90 Proteins metabolism, RNA, Antisense genetics, RNA, Long Noncoding metabolism, RNA, Messenger metabolism, Ubiquitin Thiolesterase metabolism
- Abstract
Transposable elements (TEs) compose about half of the mammalian genome and, as embedded sequences, up to 40% of long noncoding RNA (lncRNA) transcripts. Embedded TEs may represent functional domains within lncRNAs, providing a structured RNA platform for protein interaction. Here we show the interactome profile of the mouse inverted short interspersed nuclear element (SINE) of subfamily B2 (invSINEB2) alone and embedded in antisense (AS) ubiquitin C-terminal hydrolase L1 (Uchl1), an lncRNA that is AS to Uchl1 gene. AS Uchl1 is the representative member of a functional class of AS lncRNAs, named SINEUPs, in which the invSINEB2 acts as effector domain (ED)-enhancing translation of sense protein-coding mRNAs. By using RNA-interacting domainome technology, we identify the IL enhancer-binding factor 3 (ILF3) as a protein partner of AS Uchl1 RNA. We determine that this interaction is mediated by the RNA-binding motif 2 of ILF3 and the invSINEB2. Furthermore, we show that ILF3 is able to bind a free right Arthrobacter luteus (Alu) monomer sequence, the embedded TE acting as ED in human SINEUPs. Bioinformatic analysis of Encyclopedia of DNA Elements-enhanced cross-linking immunoprecipitation data reveals that ILF3 binds transcribed human SINE sequences at transcriptome-wide levels. We then demonstrate that the embedded TEs modulate AS Uchl1 RNA nuclear localization to an extent moderately influenced by ILF3. This work unveils the existence of a specific interaction between embedded TEs and an RNA-binding protein, strengthening the model of TEs as functional modules in lncRNAs.-Fasolo, F., Patrucco, L., Volpe, M., Bon, C., Peano, C., Mignone, F., Carninci, P., Persichetti, F., Santoro, C., Zucchelli, S., Sblattero, D., Sanges, R., Cotella, D., Gustincich, S. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs.
- Published
- 2019
- Full Text
- View/download PDF
25. Aldo-keto reductases protect metastatic melanoma from ER stress-independent ferroptosis.
- Author
-
Gagliardi M, Cotella D, Santoro C, Corà D, Barlev NA, Piacentini M, and Corazzari M
- Subjects
- Aldo-Keto Reductases antagonists & inhibitors, Arachidonate 15-Lipoxygenase metabolism, Biomarkers, Tumor metabolism, Cell Differentiation drug effects, Cell Line, Tumor, Cell Survival drug effects, Enzyme Inhibitors pharmacology, Gene Expression Regulation, Neoplastic drug effects, Humans, Lipid Peroxides metabolism, Melanoma genetics, NF-E2-Related Factor 2 metabolism, Neoplasm Metastasis, Oncogenes, Piperazines pharmacology, Proto-Oncogene Proteins B-raf metabolism, Up-Regulation drug effects, gamma-Glutamylcyclotransferase metabolism, Aldo-Keto Reductases metabolism, Endoplasmic Reticulum Stress drug effects, Ferroptosis drug effects, Melanoma enzymology, Melanoma pathology
- Abstract
The incidence of melanoma is increasing over the years with a still poor prognosis and the lack of a cure able to guarantee an adequate survival of patients. Although the new immuno-based coupled to target therapeutic strategy is encouraging, the appearance of targeted/cross-resistance and/or side effects such as autoimmune disorders could limit its clinical use. Alternative therapeutic strategies are therefore urgently needed to efficiently kill melanoma cells. Ferroptosis induction and execution were evaluated in metastasis-derived wild-type and oncogenic BRAF melanoma cells, and the process responsible for the resistance has been dissected at molecular level. Although efficiently induced in all cells, in an oncogenic BRAF- and ER stress-independent way, most cells were resistant to ferroptosis execution. At molecular level we found that: resistant cells efficiently activate NRF2 which in turn upregulates the early ferroptotic marker CHAC1, in an ER stress-independent manner, and the aldo-keto reductases AKR1C1 ÷ 3 which degrades the 12/15-LOX-generated lipid peroxides thus resulting in ferroptotic cell death resistance. However, inhibiting AKRs activity/expression completely resensitizes resistant melanoma cells to ferroptosis execution. Finally, we found that the ferroptotic susceptibility associated with the differentiation of melanoma cells cannot be applied to metastatic-derived cells, due to the EMT-associated gene expression reprogramming process. However, we identified SCL7A11 as a valuable marker to predict the susceptibility of metastatic melanoma cells to ferroptosis. Our results identify the use of pro-ferroptotic drugs coupled to AKRs inhibitors as a new valuable strategy to efficiently kill human skin melanoma cells.
- Published
- 2019
- Full Text
- View/download PDF
26. SINEUP non-coding RNAs rescue defective frataxin expression and activity in a cellular model of Friedreich's Ataxia.
- Author
-
Bon C, Luffarelli R, Russo R, Fortuni S, Pierattini B, Santulli C, Fimiani C, Persichetti F, Cotella D, Mallamaci A, Santoro C, Carninci P, Espinoza S, Testi R, Zucchelli S, Condò I, and Gustincich S
- Subjects
- Aconitate Hydratase metabolism, Cell Line, Fibroblasts metabolism, Humans, Lymphocytes metabolism, Phenotype, RNA, Messenger genetics, RNA, Messenger metabolism, RNA, Untranslated genetics, Frataxin, Friedreich Ataxia genetics, Gene Expression Regulation, Iron-Binding Proteins genetics, Models, Biological, RNA, Untranslated metabolism
- Abstract
Friedreich's ataxia (FRDA) is an untreatable disorder with neuro- and cardio-degenerative progression. This monogenic disease is caused by the hyper-expansion of naturally occurring GAA repeats in the first intron of the FXN gene, encoding for frataxin, a protein implicated in the biogenesis of iron-sulfur clusters. As the genetic defect interferes with FXN transcription, FRDA patients express a normal frataxin protein but at insufficient levels. Thus, current therapeutic strategies are mostly aimed to restore physiological FXN expression. We have previously described SINEUPs, natural and synthetic antisense long non-coding RNAs, which promote translation of partially overlapping mRNAs through the activity of an embedded SINEB2 domain. Here, by in vitro screening, we have identified a number of SINEUPs targeting human FXN mRNA and capable to up-regulate frataxin protein to physiological amounts acting at the post-transcriptional level. Furthermore, FXN-specific SINEUPs promote the recovery of disease-associated mitochondrial aconitase defects in FRDA-derived cells. In summary, we provide evidence that SINEUPs may be the first gene-specific therapeutic approach to activate FXN translation in FRDA and, more broadly, a novel scalable platform to develop new RNA-based therapies for haploinsufficient diseases., (© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2019
- Full Text
- View/download PDF
27. CX 3 CR1 Mediates the Development of Monocyte-Derived Dendritic Cells during Hepatic Inflammation.
- Author
-
Sutti S, Bruzzì S, Heymann F, Liepelt A, Krenkel O, Toscani A, Ramavath NN, Cotella D, Albano E, and Tacke F
- Subjects
- Animals, CX3C Chemokine Receptor 1 antagonists & inhibitors, Carbon Tetrachloride administration & dosage, Cell Differentiation, Chemical and Drug Induced Liver Injury, Dendritic Cells metabolism, Disease Models, Animal, Inflammation chemically induced, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Monocytes metabolism, CX3C Chemokine Receptor 1 metabolism, Dendritic Cells chemistry, Inflammation metabolism, Liver metabolism, Monocytes chemistry
- Abstract
Recent evidence suggests that hepatic dendritic cells (HDCs) contribute to the evolution of chronic liver diseases. However, the HDC subsets involved and the mechanisms driving these responses are still poorly understood. In this study, we have investigated the role of the fractalkine receptor CX
3 CR1 in modulating monocyte-derived dendritic cell (moDC) differentiation during liver inflammation. The phenotype of HDC and functional relevance of CX3 CR1 was assessed in mice following necro-inflammatory liver injury induced by the hepatotoxic agent carbon tetrachloride (CCl4 ) and in steatohepatitis caused by a methionine/choline-deficient (MCD) diet. In both the experimental models, hepatic inflammation was associated with a massive expansion of CD11c+ /MHCIIhigh /CD11b+ myeloid HDCs. These cells also expressed the monocyte markers Ly6C, chemokine (C-C Motif) receptor 2 (CCR2), F4/80 and CD88, along with CX3 CR1, allowing their tentative identification as moDCs. Mice defective in CX3 CR1 showed a reduction in liver-moDC recruitment following CCl4 poisoning in parallel with a defective maturation of monocytes into moDCs. The lack of CX3 CR1 also affected moDC differentiation from bone marrow myeloid cells induced by granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) in vitro. In wild-type mice, treatment with the CX3 CR1 antagonist CX3-AT (150 µg, i.p.) 24 h after CCl4 administration reduced liver moDCS and significantly ameliorated hepatic injury and inflammation. Altogether, these results highlight the possible involvement of moDCs in promoting hepatic inflammation following liver injury and indicated a novel role of CX3 CL1/CX3 CR1 dyad in driving the differentiation of hepatic moDCs.- Published
- 2019
- Full Text
- View/download PDF
28. Ecto-Calreticulin is essential for an efficient immunogenic cell death stimulation in mouse melanoma.
- Author
-
Giglio P, Gagliardi M, Bernardini R, Mattei M, Cotella D, Santoro C, Piacentini M, and Corazzari M
- Subjects
- Animals, Apoptosis immunology, Calbindin 2 immunology, Cell Line, Tumor, Female, Humans, Melanoma, Experimental immunology, Mice, Mice, Inbred C57BL, Skin Neoplasms immunology, Calbindin 2 metabolism, Cell Membrane metabolism, Immunogenic Cell Death, Melanoma, Experimental drug therapy, Skin Neoplasms drug therapy
- Abstract
Skin melanoma remains one of the most aggressive and difficult to treat human malignancy, with an increasing incidence every year. Although surgical resection represents the best therapeutic approach, this is only feasible in cases of early diagnosis. Furthermore, the established malignancy is resistant to all therapeutic strategies employed so far, resulting in an unacceptable patient survival rate. Although the immune-mediated therapeutic approaches, based on anti-PD1 or anti-CTLA4, are very promising and under clinical trial experimentation, they could conceal not yet fully emerged pitfalls such as the development of autoimmune diseases. Therefore, alternative therapeutic approaches are still under investigation, such as the immunogenic cell death (ICD) process. Here we show that the lack of calreticulin translocation onto mouse melanoma cell membrane prevents the stimulation of an effective ICD response in vivo.
- Published
- 2019
- Full Text
- View/download PDF
29. High-throughput assessment of the antibody profile in ovarian cancer ascitic fluids.
- Author
-
Antony F, Deantonio C, Cotella D, Soluri MF, Tarasiuk O, Raspagliesi F, Adorni F, Piazza S, Ciani Y, Santoro C, Macor P, Mezzanzanica D, and Sblattero D
- Abstract
The identification of effective biomarkers for early diagnosis, prognosis, and response to treatments remains a challenge in ovarian cancer (OC) research. Here, we present an unbiased high-throughput approach to profile ascitic fluid autoantibodies in order to obtain a tumor-specific antigen signature in OC. We first reported the reactivity of immunoglobulins (Igs) purified from OC patient ascites towards two different OC cell lines. Using a discovery set of Igs, we selected tumor-specific antigens from a phage display cDNA library. After biopanning, 700 proteins were expressed as fusion protein and used in protein array to enable large-scale immunoscreening with independent sets of cancer and noncancerous control. Finally, the selected antigens were validated by ELISA. The initial screening identified eight antigenic clones: CREB3, MRPL46, EXOSC10, BCOR, HMGN2, HIP1R, OLFM4, and KIAA1755. These antigens were all validated by ELISA in a study involving ascitic Igs from 153 patients (69 with OC, 34 with other cancers and 50 without cancer), with CREB3 showing the highest sensitivity (86.95%) and specificity (98%). Notably, we were able to identify an association between the tumor-associated (TA) antibody response and the response to a first-line tumor treatment (platinum-based chemotherapy). A stronger association was found by combining three antigens (BCOR, CREB3, and MRLP46) as a single antibody signature. Measurement of an ascitic fluid antibody response to multiple TA antigens may aid in the identification of new prognostic signatures in OC patients and shift attention to new potentially relevant targets.
- Published
- 2019
- Full Text
- View/download PDF
30. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2-expressing cells.
- Author
-
Soluri MF, Boccafoschi F, Cotella D, Moro L, Forestieri G, Autiero I, Cavallo L, Oliva R, Griffin M, Wang Z, Santoro C, and Sblattero D
- Subjects
- Animals, Binding Sites, Cells, Cultured, Fibronectins chemistry, Fibronectins genetics, GTP-Binding Proteins chemistry, GTP-Binding Proteins genetics, Humans, Mice, Mice, Knockout, Models, Molecular, Protein Binding, Protein Conformation, Protein Domains, Protein Glutamine gamma Glutamyltransferase 2, Signal Transduction, Transglutaminases chemistry, Transglutaminases genetics, Cell Adhesion, Cell Movement, Fibronectins metabolism, GTP-Binding Proteins metabolism, Transglutaminases metabolism
- Abstract
The interaction between the enzyme transglutaminase 2 (TG2) and fibronectin (FN) is involved in the cell-matrix interactions that regulate cell signaling, adhesion, and migration and play central roles in pathologic conditions, particularly fibrosis and cancer. A precise definition of the exact interaction domains on both proteins could provide a tool to design novel molecules with potential therapeutic applications. Although specific residues involved in the interaction within TG2 have been analyzed, little is known regarding the TG2 binding site on FN. This site has been mapped to a large internal 45-kDa protein fragment coincident with the gelatin binding domain (GBD). With the goal of defining the minimal FN interacting domain for TG2, we produced several expression constructs encoding different portions or modules of the GBD and tested their binding and functional properties. The results demonstrate that the I
8 module is necessary and sufficient for TG2-binding in vitro, but does not have functional effects on TG2-expressing cells. Modules I7 and I9 increase the strength of the binding and are required for cell adhesion. A 15-kDa fragment encompassing modules I7-9 behaves as the whole 45-kDa GBD and mediates signaling, adhesion, spreading, and migration of TG2+ cells. This study provides new insights into the mechanism for TG2 binding to FN.-Soluri, M. F., Boccafoschi, F., Cotella, D., Moro, L., Forestieri, G., Autiero, I., Cavallo, L., Oliva, R., Griffin, M., Wang, Z., Santoro, C., Sblattero, D. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2-expressing cells.- Published
- 2019
- Full Text
- View/download PDF
31. Characterization of the c9orf72 GC-rich low complexity sequence in two cohorts of Italian and Turkish ALS cases.
- Author
-
Corrado L, Tiloca C, Locci C, Bagarotti A, Hamzeiy H, Colombrita C, De Marchi F, Barizzone N, Cotella D, Ticozzi N, Mazzini L, Nazli Basak A, Ratti A, Silani V, and D'alfonso S
- Subjects
- Amyotrophic Lateral Sclerosis epidemiology, Cohort Studies, Female, Genetic Association Studies, Heterozygote, Humans, Italy epidemiology, Male, Turkey epidemiology, Amyotrophic Lateral Sclerosis genetics, C9orf72 Protein genetics, DNA Repeat Expansion
- Abstract
Large expansions of a noncoding GGGGCC repeat in the C9orf72 gene are the main cause of amyotrophic lateral sclerosis (ALS). The GGGGCC repeat is contiguous with another GC-rich region. Recent studies reported a significantly higher frequency of insertions/deletions within the GC-rich region in patients carrying the GGGGCC expansion. A GTGGT motif comprised within the GC-rich region, which joins two 100% GC sequences, was frequently deleted, supporting the hypothesis that these deletions could make the region more prone to slippage and pathological expansion. To confirm this hypothesis, we sequenced the GC-rich region adjacent the GGGGCC repeat in ALS patients, 116 C9orf72 expansion carriers, 219 non-carriers, and 223 healthy controls, from Italian and Turkish cohorts. Deletions were significantly more frequent in C9orf72 expansion carriers (6%) compared to non-carrier ALS patients (0.46%, OR =14.00, 95% CI =1.71-306.59, p = 0.003), to controls (0%, OR =16.29, 95% CI =2.12-725.99, p = 4.86 × 10
-4 ) and to the whole cohort of non-carriers (0.2%, OR =28.51, 95% CI =3.47-618.91, p = 9.58 × 10-5 ). Among expansion carriers, deletions with or without the GTGGT motif were equally distributed (4 vs. 3). The frequency of insertions was not statistically different between C9orf72 expansion carriers and any other group including the whole cohort of non-carriers (p = 0.439, Fisher's exact test). Our data confirmed the association between deletions within GC-rich region and the GGGGCC expansion in Italian and Turkish cases, although we did not confirm a role of the GTGGT element deletion. Further studies will be therefore necessary to assess the causal relationships between contiguous deletions of the GC-rich region and the GGGGCC expansion.- Published
- 2018
- Full Text
- View/download PDF
32. PKR and GCN2 stress kinases promote an ER stress-independent eIF2α phosphorylation responsible for calreticulin exposure in melanoma cells.
- Author
-
Giglio P, Gagliardi M, Tumino N, Antunes F, Smaili S, Cotella D, Santoro C, Bernardini R, Mattei M, Piacentini M, and Corazzari M
- Abstract
The immunogenic cell death (ICD) process represents a novel therapeutic approach to treat tumours, in which cytotoxic compounds promote both cancer cell death and the emission of damage-associated molecular patterns (DAMPs) from dying cells, to activate the immune system against the malignancy. Therefore, we explored the possibility to stimulate the key molecular players with a pivotal role in the execution of the ICD program in melanoma cells. To this aim, we used the pro-ICD agents mitoxantrone and doxorubicin and found that both agents could induce cell death and stimulate the release/exposure of the strictly required DAMPs in melanoma cells: i) calreticulin (CRT) exposure on the cell membrane; ii) ATP secretion; iii) type I IFNs gene up-regulation and iv) HMGB1 secretion, highlighting no interference by oncogenic BRAF. Importantly, although the ER stress-related PERK activation has been linked to CRT externalization, through the phosphorylation of eIF2α, we found that this stress pathway together with PERK were not involved in melanoma cells. Notably, we identified PKR and GCN2 as key mediators of eIF2α phosphorylation, facilitating the translocation of CTR on melanoma cells surface, under pro-ICD drugs stimulation. Therefore, our data indicate that pro-ICD drugs are able to stimulate the production/release of DAMPs in melanoma cells at least in vitro, indicating in this approach a potential new valuable therapeutic strategy to treat human skin melanoma malignancy.
- Published
- 2018
- Full Text
- View/download PDF
33. Identification of functional features of synthetic SINEUPs, antisense lncRNAs that specifically enhance protein translation.
- Author
-
Takahashi H, Kozhuharova A, Sharma H, Hirose M, Ohyama T, Fasolo F, Yamazaki T, Cotella D, Santoro C, Zucchelli S, Gustincich S, and Carninci P
- Subjects
- Animals, Cell Line, Tumor, HEK293 Cells, Humans, Mice, Phosphorylation, Protein Biosynthesis genetics, Proteins genetics, RNA, Long Noncoding genetics
- Abstract
SINEUPs are antisense long noncoding RNAs, in which an embedded SINE B2 element UP-regulates translation of partially overlapping target sense mRNAs. SINEUPs contain two functional domains. First, the binding domain (BD) is located in the region antisense to the target, providing specific targeting to the overlapping mRNA. Second, the inverted SINE B2 represents the effector domain (ED) and enhances translation. To adapt SINEUP technology to a broader number of targets, we took advantage of a high-throughput, semi-automated imaging system to optimize synthetic SINEUP BD and ED design in HEK293T cell lines. Using SINEUP-GFP as a model SINEUP, we extensively screened variants of the BD to map features needed for optimal design. We found that most active SINEUPs overlap an AUG-Kozak sequence. Moreover, we report our screening of the inverted SINE B2 sequence to identify active sub-domains and map the length of the minimal active ED. Our synthetic SINEUP-GFP screening of both BDs and EDs constitutes a broad test with flexible applications to any target gene of interest.
- Published
- 2018
- Full Text
- View/download PDF
34. Engineering Translation in Mammalian Cell Factories to Increase Protein Yield: The Unexpected Use of Long Non-Coding SINEUP RNAs.
- Author
-
Zucchelli S, Patrucco L, Persichetti F, Gustincich S, and Cotella D
- Abstract
Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells are the primary factories for the production of therapeutic proteins, including monoclonal antibodies (MAbs). To improve expression and stability, several methodologies have been adopted, including methods based on media formulation, selective pressure and cell- or vector engineering. This review presents current approaches aimed at improving mammalian cell factories that are based on the enhancement of translation. Among well-established techniques (codon optimization and improvement of mRNA secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure, SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the production of secreted proteins in biomanufacturing processes.
- Published
- 2016
- Full Text
- View/download PDF
35. Engineering mammalian cell factories with SINEUP noncoding RNAs to improve translation of secreted proteins.
- Author
-
Patrucco L, Chiesa A, Soluri MF, Fasolo F, Takahashi H, Carninci P, Zucchelli S, Santoro C, Gustincich S, Sblattero D, and Cotella D
- Subjects
- Animals, Base Sequence, CHO Cells, Cell Adhesion Molecules genetics, Cricetulus, Elastin genetics, Humans, Molecular Sequence Data, RNA, Antisense chemistry, RNA, Antisense genetics, RNA, Long Noncoding chemistry, RNA, Long Noncoding genetics, Secretory Pathway, Cell Engineering, Protein Biosynthesis, RNA, Antisense metabolism, RNA, Long Noncoding metabolism, Recombinant Proteins metabolism
- Abstract
Whenever the function of a recombinant protein depends on post-translational processing, mammalian cells become an indispensable tool for their production. This is particularly true for biologics and therapeutic monoclonal antibodies (MAbs). Despite some drawbacks, Chinese Hamster Ovary (CHO) cells are the workhorse for MAbs production in academia and industry. Several methodologies have been adopted to improve expression and stability, including methods based on selective pressure or cell engineering. We have previously identified SINEUPs as a new functional class of natural and synthetic long non-coding RNAs that through the activity of an inverted SINEB2 element are able to promote translation of partially overlapping sense coding mRNAs. Here we show that by taking advantage of their modular structure, synthetic SINEUPs can be designed to increase production of secreted proteins. Furthermore, by experimentally validating antisense to elastin (AS-eln) RNA as a natural SINEUP, we show that SINEUP-mediated control may target extracellular proteins. These results lead us to propose synthetic SINEUPs as new versatile tools to optimize production of secreted proteins in manufacturing pipelines and natural SINEUPs as new regulatory RNAs in the secretory pathways., (Copyright © 2015 Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
36. SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells.
- Author
-
Zucchelli S, Fasolo F, Russo R, Cimatti L, Patrucco L, Takahashi H, Jones MH, Santoro C, Sblattero D, Cotella D, Persichetti F, Carninci P, and Gustincich S
- Abstract
Despite recent efforts in discovering novel long non-coding RNAs (lncRNAs) and unveiling their functions in a wide range of biological processes their applications as biotechnological or therapeutic tools are still at their infancy. We have recently shown that AS Uchl1, a natural lncRNA antisense to the Parkinson's disease-associated gene Ubiquitin carboxyl-terminal esterase L1 (Uchl1), is able to increase UchL1 protein synthesis at post-transcriptional level. Its activity requires two RNA elements: an embedded inverted SINEB2 sequence to increase translation and the overlapping region to target its sense mRNA. This functional organization is shared with several mouse lncRNAs antisense to protein coding genes. The potential use of AS Uchl1-derived lncRNAs as enhancers of target mRNA translation remains unexplored. Here we define AS Uchl1 as the representative member of a new functional class of natural and synthetic antisense lncRNAs that activate translation. We named this class of RNAs SINEUPs for their requirement of the inverted SINEB2 sequence to UP-regulate translation in a gene-specific manner. The overlapping region is indicated as the Binding Doman (BD) while the embedded inverted SINEB2 element is the Effector Domain (ED). By swapping BD, synthetic SINEUPs are designed targeting mRNAs of interest. SINEUPs function in an array of cell lines and can be efficiently directed toward N-terminally tagged proteins. Their biological activity is retained in a miniaturized version within the range of small RNAs length. Its modular structure was exploited to successfully design synthetic SINEUPs targeting endogenous Parkinson's disease-associated DJ-1 and proved to be active in different neuronal cell lines. In summary, SINEUPs represent the first scalable tool to increase synthesis of proteins of interest. We propose SINEUPs as reagents for molecular biology experiments, in protein manufacturing as well as in therapy of haploinsufficiencies.
- Published
- 2015
- Full Text
- View/download PDF
37. Identification of novel proteins binding the AU-rich element of α-prothymosin mRNA through the selection of open reading frames (RIDome).
- Author
-
Patrucco L, Peano C, Chiesa A, Guida F, Luisi I, Boria I, Mignone F, De Bellis G, Zucchelli S, Gustincich S, Santoro C, Sblattero D, and Cotella D
- Subjects
- HEK293 Cells, Humans, Protein Binding, Protein Precursors metabolism, RNA, Messenger genetics, RNA, Messenger metabolism, Reproducibility of Results, Thymosin genetics, Thymosin metabolism, AU Rich Elements genetics, Open Reading Frames genetics, Protein Interaction Domains and Motifs genetics, Protein Precursors genetics, RNA-Binding Proteins metabolism, Thymosin analogs & derivatives
- Abstract
We describe here a platform for high-throughput protein expression and interaction analysis aimed at identifying the RNA-interacting domainome. This approach combines the selection of a phage library displaying "filtered" open reading frames with next-generation DNA sequencing. The method was validated using an RNA bait corresponding to the AU-rich element of α-prothymosin, an RNA motif that promotes mRNA stability and translation through its interaction with the RNA-binding protein ELAVL1. With this strategy, we not only confirmed known RNA-binding proteins that specifically interact with the target RNA (such as ELAVL1/HuR and RBM38) but also identified proteins not previously known to be ARE-binding (R3HDM2 and RALY). We propose this technology as a novel approach for studying the RNA-binding proteome.
- Published
- 2015
- Full Text
- View/download PDF
38. An Air-Well sparging minifermenter system for high-throughput protein production.
- Author
-
Deantonio C, Sedini V, Cesaro P, Quasso F, Cotella D, Persichetti F, Santoro C, and Sblattero D
- Subjects
- Escherichia coli growth & development, Escherichia coli metabolism, Protein Array Analysis, Air, Bioreactors microbiology, Biotechnology instrumentation, Biotechnology methods, High-Throughput Screening Assays methods, Recombinant Proteins biosynthesis
- Abstract
Background: Over the last few years High-Throughput Protein Production (HTPP) has played a crucial role for functional proteomics. High-quality, high yield and fast recombinant protein production are critical for new HTPP technologies. Escherichia coli is usually the expression system of choice in protein production thanks to its fast growth, ease of handling and high yields of protein produced. Even though shake-flask cultures are widely used, there is an increasing need for easy to handle, lab scale, high throughput systems., Results: In this article we described a novel minifermenter system suitable for HTPP. The Air-Well minifermenter system is made by a homogeneous air sparging device that includes an air diffusion system, and a stainless steel 96 needle plate integrated with a 96 deep well plate where cultures take place. This system provides aeration to achieve higher optical density growth compared to classical shaking growth without the decrease in pH value and bacterial viability. Moreover the yield of recombinant protein is up to 3-fold higher with a considerable improvement in the amount of full length proteins., Conclusions: High throughput production of hundreds of proteins in parallel can be obtained sparging air in a continuous and controlled manner. The system used is modular and can be easily modified and scaled up to meet the demands for HTPP.
- Published
- 2014
- Full Text
- View/download PDF
39. Phage display technology for human monoclonal antibodies.
- Author
-
Deantonio C, Cotella D, Macor P, Santoro C, and Sblattero D
- Subjects
- Animals, Antibodies, Monoclonal, Humanized biosynthesis, Antibody Specificity genetics, Antibody Specificity immunology, Antigens immunology, Gene Library, Humans, Peptide Library, Single-Chain Antibodies biosynthesis, Single-Chain Antibodies genetics, Single-Chain Antibodies immunology, Antibodies, Monoclonal, Humanized genetics, Antibodies, Monoclonal, Humanized immunology, Cell Surface Display Techniques
- Abstract
During the last 15 years in vitro technologies opened powerful routes to combine the generation of large libraries together with fast selection procedures to identify lead candidates. One of the commonest methods is based on the use filamentous phages. Antibodies (Abs) can be displayed successfully on the surface of phage by fusing the coding sequence of the antibody variable (V) regions to the phage minor coat protein pIII. By creating large libraries, antibodies with affinities comparable to those obtained using traditional hybridomas technology can be selected by a series of cycles of selection on antigen. As in this system antibody genes are cloned simultaneously with selection they can be easily further engineered for example by increasing their affinity (to levels unobtainable in the immune system), modulating their specificity or their effector function (by recloning into a full-length immunoglobulin scaffold). This chapter describes the basic protocols for antibody library construction, handling, and selection.
- Published
- 2014
- Full Text
- View/download PDF
40. Altered expression of genes for Kir ion channels in dilated cardiomyopathy.
- Author
-
Szuts V, Ménesi D, Varga-Orvos Z, Zvara Á, Houshmand N, Bitay M, Bogáts G, Virág L, Baczkó I, Szalontai B, Geramipoor A, Cotella D, Wettwer E, Ravens U, Deák F, Puskás LG, Papp JG, Kiss I, Varró A, and Jost N
- Subjects
- Adolescent, Adult, Aging genetics, Blotting, Western, Cardiomyopathy, Dilated pathology, Female, Heart Ventricles pathology, Humans, Male, Membrane Potentials, Middle Aged, Myocytes, Cardiac metabolism, Myocytes, Cardiac pathology, Patch-Clamp Techniques, Protein Isoforms, Reverse Transcriptase Polymerase Chain Reaction, Young Adult, Cardiomyopathy, Dilated genetics, Cardiomyopathy, Dilated metabolism, Gene Expression, Heart Ventricles metabolism, Potassium Channels, Inwardly Rectifying genetics
- Abstract
Dilated cardiomyopathy (DCM) is a multifactorial disease characterized by left ventricular dilation that is associated with systolic dysfunction and increased action potential duration. The Kir2.x K⁺ channels (encoded by KCNJ genes) regulate the inward rectifier current (IK1) contributing to the final repolarization in cardiac muscle. Here, we describe the transitions in the gene expression profiles of 4 KCNJ genes from healthy or dilated cardiomyopathic human hearts. In the healthy adult ventricles, KCNJ2, KCNJ12, and KCNJ4 (Kir2.1-2.3, respectively) genes were expressed at high levels, while expression of the KCNJ14 (Kir2.4) gene was low. In DCM ventricles, the levels of Kir2.1 and Kir2.3 were upregulated, but those of Kir2.2 channels were downregulated. Additionally, the expression of the DLG1 gene coding for the synapse-associated protein 97 (SAP97) anchoring molecule exhibited a 2-fold decline with increasing age in normal hearts, and it was robustly downregulated in young DCM patients. These adaptations could offer a new aspect for the explanation of the generally observed physiological and molecular alterations found in DCM.
- Published
- 2013
- Full Text
- View/download PDF
41. An evolutionarily conserved mode of modulation of Shaw-like K⁺ channels.
- Author
-
Cotella D, Hernandez-Enriquez B, Duan Z, Wu X, Gazula VR, Brown MR, Kaczmarek LK, and Sesti F
- Subjects
- Animals, Brain Stem pathology, Caenorhabditis elegans, Membrane Potentials genetics, Mice, Mice, Inbred C57BL, Phosphorylation physiology, Brain Stem metabolism, Evolution, Molecular, Neurons metabolism, Shaw Potassium Channels genetics, Shaw Potassium Channels metabolism
- Abstract
Voltage-gated K(+) channels of the Shaw family (also known as the KCNC or Kv3 family) play pivotal roles in mammalian brains, and genetic or pharmacological disruption of their activities in mice results in a spectrum of behavioral defects. We have used the model system of Caenorhabditis elegans to elucidate conserved molecular mechanisms that regulate these channels. We have now found that the C. elegans Shaw channel KHT-1, and its mammalian homologue, murine Kv3.1b, are both modulated by acid phosphatases. Thus, the C. elegans phosphatase ACP-2 is stably associated with KHT-1, while its mammalian homolog, prostatic acid phosphatase (PAP; also known as ACPP-201) stably associates with murine Kv3.1b K(+) channels in vitro and in vivo. In biochemical experiments both phosphatases were able to reverse phosphorylation of their associated channel. The effect of phosphorylation on both channels is to produce a decrease in current amplitude and electrophysiological analyses demonstrated that dephosphorylation reversed the effects of phosphorylation on the magnitude of the macroscopic currents. ACP-2 and KHT-1 were colocalized in the nervous system of C. elegans and, in the mouse nervous system, PAP and Kv3.1b were colocalized in subsets of neurons, including in the brain stem and the ventricular zone. Taken together, this body of evidence suggests that acid phosphatases are general regulatory partners of Shaw-like K(+) channels.
- Published
- 2013
- Full Text
- View/download PDF
42. N-glycosylation of the mammalian dipeptidyl aminopeptidase-like protein 10 (DPP10) regulates trafficking and interaction with Kv4 channels.
- Author
-
Cotella D, Radicke S, Cipriani V, Cavaletto M, Merlin S, Follenzi A, Ravens U, Wettwer E, Santoro C, and Sblattero D
- Subjects
- Amino Acid Sequence, Animals, Asparagine genetics, Asparagine metabolism, CHO Cells, Cell Line, Cricetinae, Cricetulus, Dipeptidyl-Peptidases and Tripeptidyl-Peptidases chemistry, Dipeptidyl-Peptidases and Tripeptidyl-Peptidases genetics, Electrophoresis, Polyacrylamide Gel, Flow Cytometry, Glycosylation, Humans, Immunoprecipitation, Mass Spectrometry, Molecular Sequence Data, Mutagenesis, Protein Binding, Protein Transport, Dipeptidyl-Peptidases and Tripeptidyl-Peptidases metabolism, Shal Potassium Channels metabolism
- Abstract
The dipeptidyl aminopeptidase-like protein 10 (DPP10) is a type II transmembrane protein homologue to the serine protease DPPIV/CD26 but enzymatically inactive. In the mammalian brain, DPP10 forms a complex with voltage-gated potassium channels of the Kv4 family, regulating their cell surface expression and biophysical properties. DPP10 is a glycoprotein containing eight predicted N-glycosylation sites in the extracellular domain. In this study we investigated the role of N-glycosylation on DPP10 trafficking and functional activity. Using site-directed mutagenesis (N to Q) we showed that N-glycosylation occured at six positions. Glycosylation at these specific residues was necessary for DPP10 trafficking to the plasma membrane as observed by flow cytometry. The surface expression levels of the substitutions N90Q, N119Q, N257Q and N342Q were reduced by more than 60%. Hence the interaction with the Kv4.3/KChIP2a channel complex was disrupted preventing the hastening effect of wild type DPP10 on current kinetics. Interestingly, N257 was crucial for this function and its substitution to glutamine completely blocked DPP10 sorting to the cell surface and prevented DPP10 dimerization. In summary, we demonstrated that glycosylation was necessary for both DPP10 trafficking to the cell surface and functional interaction with Kv4 channels., (Copyright © 2012 Elsevier Ltd. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
43. Impaired glycosylation blocks DPP10 cell surface expression and alters the electrophysiology of Ito channel complex.
- Author
-
Cotella D, Radicke S, Bortoluzzi A, Ravens U, Wettwer E, Santoro C, and Sblattero D
- Subjects
- Animals, CHO Cells, Cell Membrane drug effects, Cricetinae, Cricetulus, Dipeptidyl-Peptidases and Tripeptidyl-Peptidases genetics, Glycosylation, Heart Atria metabolism, Humans, Kinetics, Kv Channel-Interacting Proteins genetics, Membrane Potentials, Myocytes, Cardiac metabolism, Neuraminidase pharmacology, Protein Transport, Shal Potassium Channels drug effects, Shal Potassium Channels genetics, Transfection, Tunicamycin pharmacology, Cell Membrane metabolism, Dipeptidyl-Peptidases and Tripeptidyl-Peptidases metabolism, Ion Channel Gating drug effects, Kv Channel-Interacting Proteins metabolism, Potassium metabolism, Protein Processing, Post-Translational drug effects, Shal Potassium Channels metabolism
- Abstract
DPP10 is a transmembrane glycosylated protein belonging to the family of dipeptidyl aminopeptidase-like proteins (DPPLs). DPPLs are auxiliary subunits involved in the regulation of voltage-gated Kv4 channels, key determinants of cardiac and neuronal excitability. Although it is known that DPPLs are needed to generate native-like currents in heterologous expression systems, the molecular basis of this involvement are still poorly defined. In this study, we investigated the functional relevance of DPP10 glycosylation in modulating Kv4.3 channel activities. Using transfected Chinese hamster ovary (CHO) cells to reconstitute Kv4 complex, we show that the pharmacological inhibition of DPP10 glycosylation by tunicamycin and neuraminidase affects transient outward potassium current (I (to)) kinetics. Tunicamycin completely blocked DPP10 glycosylation and reduced DPP10 cell surface expression. The accelerating effects of DPP10 on Kv4.3 current kinetics, i.e. on inactivation and recovery from inactivation, were abolished. Neuraminidase produced different effects on current kinetics than tunicamycin, i.e., shifted the voltage dependence to more negative potentials. The effects of tunicamycin on the native I (to) currents of human atrial myocytes expressing DPP10 were similar to those of the KV4.3/KChIP2/DPP10 complex in CHO cells. Our results suggest that N-linked glycosylation of DPP10 plays an important role in modulating Kv4 channel activities.
- Published
- 2010
- Full Text
- View/download PDF
44. The transmembrane beta-subunits KCNE1, KCNE2, and DPP6 modify pharmacological effects of the antiarrhythmic agent tedisamil on the transient outward current Ito.
- Author
-
Radicke S, Cotella D, Sblattero D, Ravens U, Santoro C, and Wettwer E
- Subjects
- Animals, Bridged Bicyclo Compounds, Heterocyclic metabolism, CHO Cells, Cricetinae, Cricetulus, Cyclopropanes metabolism, Dipeptidyl-Peptidases and Tripeptidyl-Peptidases antagonists & inhibitors, Dose-Response Relationship, Drug, Humans, Membrane Potentials drug effects, Membrane Potentials physiology, Nerve Tissue Proteins antagonists & inhibitors, Potassium Channels, Voltage-Gated antagonists & inhibitors, Protein Subunits antagonists & inhibitors, Shal Potassium Channels antagonists & inhibitors, Shal Potassium Channels metabolism, Anti-Arrhythmia Agents pharmacology, Bridged Bicyclo Compounds, Heterocyclic pharmacology, Cyclopropanes pharmacology, Dipeptidyl-Peptidases and Tripeptidyl-Peptidases physiology, Nerve Tissue Proteins physiology, Potassium Channels physiology, Potassium Channels, Voltage-Gated physiology, Protein Subunits physiology
- Abstract
Accessory beta-subunits modulate the pharmacology of ion channel blockers. The aim was to investigate differences in effects of the antiarrhythmic agent and open-channel blocker tedisamil on transient outward current I(to) (Kv4.3) when coexpressed with beta-subunits potassium voltage-gated channel, Isk-related family, member 1 (KCNE1), potassium voltage-gated channel, Isk-related family, member 2 (KCNE2), or dipeptidyl-aminopeptidase-like protein 6 (DPP6) which modulate I(to) kinetics. Tedisamil inhibited I(to) with IC(50) values of 16 microM for Kv4.3+KChIP2, 11 microM in the presence of KCNE1, and 14 microM for KCNE2. Values were higher in the presence of DPP6 or DPP6+KCNE2 (35 and 26 microM). K(d) values of tedisamil binding and rate constants were not affected by KCNE or DPP6. I(to) kinetics were accelerated by KCNE and DPP6, inactivation to a larger extent with DPP6. Tedisamil did not affect activation time course but apparently accelerated inactivation in all channel subunit combinations tested. Deletion of the intracellular domain of KCNE2 or DPP6 resulted in slowing of kinetics and increased tedisamil sensitivity (IC(50) 4 and 7 microM). It is concluded that apparent effects of DPP6 and deletion mutants (KCNE2 and DPP6) are due to the acceleration or slowing effects of the beta-subunits on I(to) kinetics.
- Published
- 2009
- Full Text
- View/download PDF
45. Primer sets for cloning the human repertoire of T cell Receptor Variable regions.
- Author
-
Boria I, Cotella D, Dianzani I, Santoro C, and Sblattero D
- Subjects
- Algorithms, Antigens, Base Sequence genetics, Complementarity Determining Regions immunology, DNA Primers chemistry, DNA Primers immunology, Gene Library, Gene Rearrangement, T-Lymphocyte immunology, Humans, Immunoglobulin Variable Region genetics, Leukocytes, Mononuclear cytology, Leukocytes, Mononuclear metabolism, Receptors, Antigen, T-Cell immunology, Reverse Transcriptase Polymerase Chain Reaction, T-Cell Antigen Receptor Specificity immunology, Cloning, Molecular, Complementarity Determining Regions genetics, DNA Primers genetics, Gene Rearrangement, T-Lymphocyte genetics, Genes, T-Cell Receptor, Receptors, Antigen, T-Cell genetics, T-Cell Antigen Receptor Specificity genetics
- Abstract
Background: Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible., Results: Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT, the ImMunoGeneTics information system. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells., Conclusion: This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.
- Published
- 2008
- Full Text
- View/download PDF
46. Functional modulation of the transient outward current Ito by KCNE beta-subunits and regional distribution in human non-failing and failing hearts.
- Author
-
Radicke S, Cotella D, Graf EM, Banse U, Jost N, Varró A, Tseng GN, Ravens U, and Wettwer E
- Subjects
- Animals, CHO Cells, Case-Control Studies, Cricetinae, Cricetulus, Female, Gene Expression Regulation, Humans, Kv Channel-Interacting Proteins metabolism, Male, Membrane Potentials, Myocardium chemistry, Patch-Clamp Techniques, Potassium Channels, Voltage-Gated metabolism, Reverse Transcriptase Polymerase Chain Reaction, Shal Potassium Channels genetics, Heart Failure metabolism, Kv Channel-Interacting Proteins genetics, Myocardium metabolism, Potassium Channels, Voltage-Gated genetics, RNA, Messenger analysis, Shal Potassium Channels metabolism
- Abstract
Objectives: The function of Kv4.3 (KCND3) channels, which underlie the transient outward current I(to) in human heart, can be modulated by several accessory subunits such as KChIP2 and KCNE1-KCNE5. Here we aimed to determine the regional expression of Kv4.3, KChIP2, and KCNE mRNAs in non-failing and failing human hearts and to investigate the functional consequences of subunit coexpression in heterologous expression systems., Methods: We quantified mRNA levels for two Kv4.3 isoforms, Kv4.3-S and Kv4.3-L, and for KChIP2 as well as KCNE1-KCNE5 with real-time RT-PCR. We also studied the effects of KCNEs on Kv4.3+KChIP2 current characteristics in CHO cells with the whole-cell voltage-clamp method., Results: In non-failing hearts, low expression was found for KCNE1, KCNE3, and KCNE5, three times higher expression for KCNE2, and 60 times higher for KCNE4. Transmural gradients were detected only for KChIP2 in left and right ventricles. Compared to non-failing tissue, failing hearts showed higher expression of Kv4.3-L and KCNE1 and lower of Kv4.3-S, KChIP2, KCNE4, and KCNE5. In CHO cells, Kv4.3+KChIP2 currents were differentially modified by co-expressed KCNEs: time constants of inactivation were shorter with KCNE1 and KCNE3-5 while time-to-peak was decreased, and V(0.5) of steady-state inactivation was shifted to more negative potentials by all KCNE subunits. Importantly, KCNE2 induced a unique and prominent 'overshoot' of peak current during recovery from inactivation similar to that described for human I(to) while other KCNE subunits induced little (KCNE4,5) or no overshoot., Conclusions: All KCNEs are expressed in the human heart at the transcript level. Compared to I(to) in native human myocytes, none of the combination of KChIP2 and KCNE produced an ideal congruency in current characteristics, suggesting that additional factors contribute to the regulation of the native I(to) channel.
- Published
- 2006
- Full Text
- View/download PDF
47. Expression and function of dipeptidyl-aminopeptidase-like protein 6 as a putative beta-subunit of human cardiac transient outward current encoded by Kv4.3.
- Author
-
Radicke S, Cotella D, Graf EM, Ravens U, and Wettwer E
- Subjects
- Amino Acid Sequence, Animals, Blotting, Western, CHO Cells, Calcium-Binding Proteins genetics, Calcium-Binding Proteins metabolism, Cricetinae, Dipeptidyl-Peptidases and Tripeptidyl-Peptidases, Humans, Kv Channel-Interacting Proteins, Membrane Potentials physiology, Molecular Sequence Data, Nerve Tissue Proteins metabolism, Patch-Clamp Techniques, Peptide Hydrolases, Potassium Channels metabolism, Protein Subunits genetics, Protein Subunits metabolism, RNA, Messenger analysis, Rats, Shal Potassium Channels, Transfection, Myocytes, Cardiac physiology, Nerve Tissue Proteins genetics, Potassium Channels genetics, Potassium Channels, Voltage-Gated genetics, Potassium Channels, Voltage-Gated metabolism
- Abstract
Dipeptidyl-aminopeptidase-like protein 6 (DPPX) was recently shown in the brain to modulate the kinetics of transient A-type currents by accelerating inactivation and recovery from inactivation. Since the kinetics of human cardiac transient outward current (I(to)) are not mimicked by coexpression of the alpha-subunit Kv4.3 with its known beta-subunit KChIP2, we have tested the hypothesis that DPPX may serve as an additional beta-subunit in the human heart. With quantitative real-time RT-PCR strong mRNA expression of DPPX was detected in human ventricles and was verified at the protein level in human but not in rat heart by a DPPX-specific antibody. Co-expression of DPPX with Kv4.3 in Chinese hamster ovary cells produced I(to)-like currents, but compared with expression of KChIP2a and Kv4.3, the time constant of inactivation was faster, the potential of half-maximum steady-state inactivation was more negative and recovery from inactivation was delayed. Co-expression of DPPX in addition to Kv4.3 and KChIP2a produced similar current kinetics as in human ventricular myocytes. We therefore propose that DPPX is an essential component of the native cardiac I(to) channel complex in human heart.
- Published
- 2005
- Full Text
- View/download PDF
48. Silencing the cardiac potassium channel Kv4.3 by RNA interference in a CHO expression system.
- Author
-
Cotella D, Jost N, Darna M, Radicke S, Ravens U, and Wettwer E
- Subjects
- Animals, Base Sequence, CHO Cells, Cloning, Molecular, Cricetinae, DNA Primers, Humans, Patch-Clamp Techniques, Polymerase Chain Reaction, Potassium Channels, Voltage-Gated metabolism, Potassium Channels, Voltage-Gated physiology, RNA, Messenger genetics, RNA, Small Interfering genetics, Shal Potassium Channels, Gene Silencing, Potassium Channels, Voltage-Gated genetics, RNA Interference
- Abstract
RNA interference (RNAi) is a powerful technique for gene silencing, in which the downregulation of mRNA is triggered by short RNAs complementary to a target mRNA sequence, with consequent reduction of the encoded protein. The aim of this study was to test the effects of silencing the expression of the cardiac potassium channel Kv4.3 in a heterologous expression system, in order to investigate the effect of RNAi on channel properties. A Chinese hamster ovary cell line stably expressing Kv4.3 and the accessory beta-subunit KChIP2 was transfected with small-interfering RNAs (siRNAs) targeting Kv4.3. Effects of RNAi were monitored at the mRNA, protein, and functional levels. Real-time PCR and immunofluorescence staining revealed significant reduction of Kv4.3 mRNA and protein expression. These results were confirmed by functional patch-clamp measurements of the transient outward current (I(to)) which was reduced up to 80% by RNAi. We conclude that the use of siRNAs reagents for post-transcriptional gene silencing is a new effective method for the reduction of the expression and function of different ionic channels which may be adapted for studying their role also in native cells.
- Published
- 2005
- Full Text
- View/download PDF
49. Selection of peptides with affinity for the N-terminal domain of GATA-1: Identification of a potential interacting protein.
- Author
-
Secco P, Cotella D, and Santoro C
- Subjects
- Amino Acid Sequence, Animals, Binding Sites, Binding, Competitive, Databases, Nucleic Acid, Erythroid-Specific DNA-Binding Factors, GATA1 Transcription Factor, Gene Products, nef chemistry, Mice, Molecular Sequence Data, Peptides chemistry, Peptides metabolism, Protein Structure, Tertiary, Proteins, DNA-Binding Proteins chemistry, DNA-Binding Proteins metabolism, Gene Products, nef metabolism, Transcription Factors chemistry, Transcription Factors metabolism
- Abstract
As most transcription factors, GATA-1 activities are mediated by interactions with multiple proteins. Those identified so far associate with the zinc-finger domain and/or surrounding sequences. In contrast, no proteins interacting with the N-terminal domain have been identified although several evidences suggest its involvement in the control of hematopoiesis. In an attempt to identify proteins that interact with the N-terminal transactivation domain of GATA-1, a random phage peptide library was screened with recombinant GATA-1 protein and the sequence of a selected peptide was used for database protein sequence retrieval. We selected a set of peptides sharing the core sequence phi-B((2-3))-nu((2-4)) (where phi, B, and nu represent hydrophobic, basic, and neutral residues, respectively). Using the sequence of the most represented peptide (pep5) as query, we retrieved the HIV accessory protein Nef. We show that Nef binds GATA-1 and GATA-3 in vitro in virtue of its sequence homology with pep5.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.