Back to Search Start Over

An evolutionarily conserved mode of modulation of Shaw-like K⁺ channels.

Authors :
Cotella D
Hernandez-Enriquez B
Duan Z
Wu X
Gazula VR
Brown MR
Kaczmarek LK
Sesti F
Source :
FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2013 Apr; Vol. 27 (4), pp. 1381-93. Date of Electronic Publication: 2012 Dec 11.
Publication Year :
2013

Abstract

Voltage-gated K(+) channels of the Shaw family (also known as the KCNC or Kv3 family) play pivotal roles in mammalian brains, and genetic or pharmacological disruption of their activities in mice results in a spectrum of behavioral defects. We have used the model system of Caenorhabditis elegans to elucidate conserved molecular mechanisms that regulate these channels. We have now found that the C. elegans Shaw channel KHT-1, and its mammalian homologue, murine Kv3.1b, are both modulated by acid phosphatases. Thus, the C. elegans phosphatase ACP-2 is stably associated with KHT-1, while its mammalian homolog, prostatic acid phosphatase (PAP; also known as ACPP-201) stably associates with murine Kv3.1b K(+) channels in vitro and in vivo. In biochemical experiments both phosphatases were able to reverse phosphorylation of their associated channel. The effect of phosphorylation on both channels is to produce a decrease in current amplitude and electrophysiological analyses demonstrated that dephosphorylation reversed the effects of phosphorylation on the magnitude of the macroscopic currents. ACP-2 and KHT-1 were colocalized in the nervous system of C. elegans and, in the mouse nervous system, PAP and Kv3.1b were colocalized in subsets of neurons, including in the brain stem and the ventricular zone. Taken together, this body of evidence suggests that acid phosphatases are general regulatory partners of Shaw-like K(+) channels.

Details

Language :
English
ISSN :
1530-6860
Volume :
27
Issue :
4
Database :
MEDLINE
Journal :
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Publication Type :
Academic Journal
Accession number :
23233530
Full Text :
https://doi.org/10.1096/fj.12-222778