1. Elastic wave control in reticulated plates using Schwarz primitive cells
- Author
-
Nooghabi, Aida Hejazi, Thomsen, Henrik R., Zhao, Bao, and Colombi, Andrea
- Subjects
Physics - Applied Physics - Abstract
In this work, the Schwarz primitive unit cell is used as the building block of different types of metastructures for steering and focusing elastic vibrations. The emergence of a Bragg-type bandgap when constructing a two-dimensional plate from such unit cells is experimentally validated. It is demonstrated that increasing both mass and porosity of the Schwarz primitive leads to a decrease in the frequency of the out-of-plane propagating wave targeted in this study. By arranging these modified Schwarz primitive unit cells in constant and graded layouts, two-dimensional plates with an embedded metabarrier and a metalens are numerically designed. The metabarrier protects an interior area of the plate from the propagating waves on a wide frequency band (approx. 1.4-3.4 kHz). Equally, the refractive index profile necessary for gradient index lenses is obtained via a progressive variation of the added mass or, alternatively, the porosity of the unit cell over a rectangular area. For the first time, bending of the out-of-plane mode towards the focusing point is practically validated in a challenging mesoscale experiment requiring the assembly of different three-dimensional printed sections of the plate. The increased porosity design is advantageous not only in terms of overall lightweight, but also towards additive manufacturing as it requires less material.
- Published
- 2024