67 results on '"Colin Bonduelle"'
Search Results
2. Hysteretic LCST of amino acid-based polymers
- Author
-
Colin Bonduelle, Simon Harrisson, Sebastien Lecommandoux, Rosanna Le Scouarnec, and Mostafa Badreldin
- Published
- 2023
- Full Text
- View/download PDF
3. Star-like poly(peptoid)s with selective antibacterial activity
- Author
-
Pedro Salas-Ambrosio, Antoine Tronnet, Mostafa Badreldin, Luzangel Reyes, Marc Since, Sandra Bourgeade-Delmas, Bruno Dupuy, Pierre Verhaeghe, Colin Bonduelle, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Pathogénèse des Bactéries Anaérobies / Pathogenesis of Bacterial Anaerobes (PBA (U-Pasteur_6)), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), Pharmacochimie et Biologie pour le Développement (PHARMA-DEV), Institut de Recherche pour le Développement (IRD)-Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT), Centre Hospitalier Universitaire de Nîmes (CHU Nîmes), CONACYT (scholar-ship holder no. 548662), and ANR-17-CE07-0039,Therapeptics,Analogues Polymériques de Peptides Antimicrobiens à Potentiel Thérapeutique anti-Clostridium difficile(2017)
- Subjects
Polymers and Plastics ,Organic Chemistry ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Bioengineering ,Biochemistry - Abstract
International audience; We developed new macromolecular engineering approaches enabling the preparation of star-like polypeptoids by ring-opening polymerization. Parallely to the evaluation of their cytotoxicity of the HepG2 human cell line, their screening toward a wide variety of Gram-positive and Gram-negative bacteria higlighted several compounds showing not only good but also selective antimicrobial activity.
- Published
- 2022
- Full Text
- View/download PDF
4. Effect of N-alkylation in N-carboxyanhydride (NCA) ring-opening polymerization kinetics
- Author
-
Pedro Salas-Ambrosio, Antoine Tronnet, Mostafa Badreldin, Sifan Ji, Sebastien Lecommandoux, Simon Harrisson, Pierre Verhaeghe, Colin Bonduelle, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Nîmes (CHU Nîmes), and ANR-17-CE07-0039,Therapeptics,Analogues Polymériques de Peptides Antimicrobiens à Potentiel Thérapeutique anti-Clostridium difficile(2017)
- Subjects
Polymers and Plastics ,Organic Chemistry ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Bioengineering ,Biochemistry - Abstract
International audience; Polypeptoids are an emerging class of biomimetic polymers prepared by ring-opening polymerization (ROP) of N-alkylated-N-carboxyanhydride (NNCA) monomers. The N-alkylation provides a unique structural isomerism with peptides but its influence on NNCA reactivity is not yet fully understood. In this report, we provide a comprehensive study using 12 monomers to better rationalize the contribution of the steric hindrance and electronic effects of the N-alkyl group toward the synthesis of NNCA and their reactivity in ring-opening polymerization (ROP) reactions. We found that varying the alkyl group does not significantly influence the formation of NNCAs prepared by the Leuchs’ method. In marked contrast, depending on the alkyl group, the efficiency of the NNCA polymerization initiated by allylamine showed that electron-donating groups enhanced the ROP kinetic rates through significant inductive effect and could counterbalance the negative influence of bulky groups during the propagation steps.
- Published
- 2022
- Full Text
- View/download PDF
5. Rücktitelbild: Memory Effect in Thermoresponsive Proline‐based Polymers (Angew. Chem. 46/2022)
- Author
-
Mostafa Badreldin, Rosanna Le Scouarnec, Sebastien Lecommandoux, Simon Harrisson, and Colin Bonduelle
- Subjects
General Medicine - Published
- 2022
- Full Text
- View/download PDF
6. Efficient Gene Delivery of Tailored Amphiphilic Polypeptides by Polyplex Surfing
- Author
-
Paul Klemm, Jana I. Solomun, Marko Rodewald, Maren T. Kuchenbrod, Veit G. Hänsch, Friederike Richter, Jürgen Popp, Christian Hertweck, Stephanie Hoeppener, Colin Bonduelle, Sébastien Lecommandoux, Anja Traeger, and Stephanie Schubert
- Subjects
Biomaterials ,Polymers and Plastics ,Glutamine ,Cations ,Materials Chemistry ,Gene Transfer Techniques ,Bioengineering ,Genetic Therapy ,Transfection ,Peptides - Abstract
Within this study, an amphiphilic and potentially biodegradable polypeptide library based on poly[(4-aminobutyl)-l-glutamine
- Published
- 2022
7. Cyclic Poly(α-peptoid)s by Lithium bis(trimethylsilyl)amide (LiHMDS)-Mediated Ring-Expansion Polymerization: Simple Access to Bioactive Backbones
- Author
-
Pierre Verhaeghe, Sébastien Lecommandoux, Antoine Tronnet, Marc Since, Jean-Luc Stigliani, Pedro Salas-Ambrosio, Sandra Bourgeade-Delmas, Bruno Dupuy, Amelie Vax, Colin Bonduelle, Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Pathogénèse des Bactéries Anaérobies / Pathogenesis of Bacterial Anaerobes (PBA (U-Pasteur_6)), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), Pharmacochimie et Biologie pour le Développement (PHARMA-DEV), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut de Recherche pour le Développement (IRD), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Trimethylsilyl Compounds ,Cell Survival ,Polymers ,Lithium bis(trimethylsilyl)amide ,Microbial Sensitivity Tests ,[CHIM.THER]Chemical Sciences/Medicinal Chemistry ,010402 general chemistry ,Ring (chemistry) ,01 natural sciences ,Biochemistry ,Catalysis ,Cell Line ,Polymerization ,Macrocyclic polypeptoids ,Peptoids ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,Biological property ,Humans ,Density Functional Theory ,Ring expansion polymerization (REP) ,chemistry.chemical_classification ,Clostridioides difficile ,Peptoid ,General Chemistry ,Polymer ,Combinatorial chemistry ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Monomer ,chemistry ,Cyclization - Abstract
International audience; Cyclic polymers display unique physicochemical and biological properties. However, their development is often limited by their challenging preparation. In this work, we present a simple route to cyclic poly(α-peptoids) from N-alkylated-N-carboxyanhydrides (NNCA) using LiHMDS promoted ring-expansion polymerization (REP) in DMF. This new method allows the unprecedented use of lysine-like monomers in REP to design bioactive macrocycles bearing pharmaceutical potential against Clostridioides difficile, a bacterium responsible for nosocomial infections.
- Published
- 2021
- Full Text
- View/download PDF
8. Memory Effect in Thermoresponsive Proline-based Polymers
- Author
-
Mostafa Badreldin, Rosanna Le Scouarnec, Sebastien Lecommandoux, Simon Harrisson, and Colin Bonduelle
- Subjects
Proline ,Polymers ,Temperature ,Proteins ,Water ,General Medicine ,General Chemistry ,Catalysis - Abstract
We report that synthetic polymers consisting of L-proline monomer units exhibit temperature-driven aggregation in water with unprecedented hysteresis. This protein-like behavior is robust and governed by the chirality of the proline units. It paves the way to new processes, driven by either temperature or ionic strength changes, such as a simple "with memory" thermometer.
- Published
- 2022
9. Side chain interactions govern the response of polypeptide alpha-helices under mechanical stress and prevent the formation of beta-sheets
- Author
-
Marie Asano, Damien Sluysmans, Nicolas Willet, Colin Bonduelle, Sébastien Lecommandoux, and Anne-Sophie Duwez
- Abstract
Secondary a-helix and b-sheet structures are key scaffolds around which the rest of the residues condense during protein folding. They are crucial for proteins to adopt their correct native structure. Despite their key role in numerous processes to maintain life, little is known about their properties under force. Their stability under mechanical stress, as constantly experienced in the turbulent environment of cells, is however essential. Here, we designed and synthesized two pH-responsive polypeptides, poly(L-glutamic acid) and poly(L-lysine), for optimal interfacing with an AFM single-molecule force spectroscopy set-up to probe the mechanical unfolding of a-helix and b-sheet secondary motifs. The force experiments, supported by simulations, reveal a superior mechanical stability of the poly(L-Lysine) a-helix, which we attribute to hydrophobic interactions of the alkyl side chains. Most importantly, our results show that these interactions play a key role in inhibiting the formation of a metastable b-sheet-like structure when the polypeptide is subjected to mechanical deformations, which might have important implications in the mechanism behind polyQ diseases.
- Published
- 2022
- Full Text
- View/download PDF
10. Self-assembled PEGylated amphiphilic polypeptides for gene transfection
- Author
-
Jana I. Solomun, Anja Traeger, Paul Klemm, Colin Bonduelle, Mira Behnke, Stephanie Schubert, Sébastien Lecommandoux, Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences LCPO - Laboratoire de Chimie des Polymères Organiques, and Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Friedrich Schiller University Jena
- Subjects
Cell Survival ,Biomedical Engineering ,Glutamic Acid ,Biocompatible Materials ,02 engineering and technology ,Gene delivery ,Transfection ,010402 general chemistry ,01 natural sciences ,Ring-opening polymerization ,Cell Line ,Polyethylene Glycols ,Mice ,chemistry.chemical_compound ,Dynamic light scattering ,Amphiphile ,Copolymer ,Animals ,Humans ,[CHIM]Chemical Sciences ,General Materials Science ,Electrophoresis, Agar Gel ,chemistry.chemical_classification ,Lysine ,Gene Transfer Techniques ,Cationic polymerization ,DNA ,General Chemistry ,General Medicine ,Polymer ,021001 nanoscience & nanotechnology ,Controlled release ,Combinatorial chemistry ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Nanoparticles ,Peptides ,0210 nano-technology ,Ethylene glycol - Abstract
International audience; In the present study, three biodegradable block copolymers composed of a poly(ethylene glycol) block and a copolypeptide block with varying compositions of cationic L-lysine (L-Lys) and hydrophobic benzyl-L-glutamate (Bzl-L-Glu) were designed for gene delivery applications. The polypeptides were synthesized by ring opening polymerization (ROP) and after orthogonal deprotection of Boc-L-Lys side chains, the polymer exhibited an amphiphilic character. To bind or encapsulate plasmid DNA (pDNA), different formulations were investigated: a nanoprecipitation and an emulsion technique using various organic solvents as well as an aqueous pH-controlled formulation method. The complex and nanoparticle (NP) formations were monitored by dynamic light scattering (DLS), and pDNA interaction was shown by gel electrophoresis and subsequent controlled release with heparin. The polypeptides were further tested for their cytotoxicity as well as biodegradability. The complexes and NPs presentingthe most promising size distributions and pDNA binding ability were subsequently evaluated for their transfection efficiency in HEK293T cells. The highest transfection efficiencies were obtained with an aqueous formulation of the polypeptide containing the highest L-Lys content and lowest proportion of hydrophobic, helical structures (P1*), which is therefore a promising candidate for efficient gene delivery by biodegradable gene delivery vectors.
- Published
- 2021
- Full Text
- View/download PDF
11. Enhanced Dielectric Relaxation in Self-Organized Layers of Polypeptides Coupled to Platinum Nanoparticles: Temperature Dependence and Effect of Bias Voltage
- Author
-
Louis Merle, Ghada Manai, Adeline Pham, Philippe Demont, Colin Bonduelle, Adnen Mlayah, Simon Tricard, Sébastien Lecommandoux, Jérémie Grisolia, Laboratoire de physique et chimie des nano-objets (LPCNO), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Centre d'élaboration de matériaux et d'études structurales (CEMES), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Équipe Photonique (LAAS-PHOTO), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, ANR-18-CE09-0007,MOSC,Chimie supraparticulaire orientée par des molécules(2018), ANR-17-EURE-0009,NanoX,Science et Ingénierie à l'Echelle Nano(2017), Bordeaux INP - BINP (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux - ENSCPB (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université de Bordeaux (FRANCE), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
- Subjects
Materials science ,Matériaux ,Metal nanoparticles ,02 engineering and technology ,Activation energy ,Dielectric ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Capacitance ,[SPI.MAT]Engineering Sciences [physics]/Materials ,symbols.namesake ,Physical and Theoretical Chemistry ,Composites ,Arrhenius equation ,Relaxation (NMR) ,Biasing ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Dielectric spectroscopy ,General Energy ,Chemical physics ,symbols ,Electrical properties ,Charge carrier ,0210 nano-technology ,Molecular structure - Abstract
International audience; Using alternative current impedance spectroscopy, we investigate the dynamical conductivity of hybrid nanomaterials composed of helical polypeptide layers containing platinum nanoparticles (PtNP). The electrical characteristics of the self-organized poly(γ-benzyl-l-glutamate) (PBGL) in bidimensional lamellar assembly in the presence of Pt nanoparticles are well modeled and described by a single equivalent circuit of parallel resistance and capacitance. The latter are determined using a comparison between the measured and calculated Nyquist plots, which allows extracting the characteristic relaxation time and frequency of the dipolar relaxation process. We found that the relaxation frequency in the PBLG–PtNP hybrid materials is enhanced by 4 orders of magnitudes compared to pure PBLG, which indicates a much faster dielectric relaxation in PBLG–PtNP due to dipole orientation and dipole–dipole interactions. The temperature dependence of the relaxation time is analyzed using Arrhenius plots, from which the activation energy of the relaxation process is found to be around 0.1 eV. Such a value close to the peptide vibration energy of the PBLG indicates a vibration-assisted relaxation process and a polaronic charge transport mechanism. An advantage of the PBLG–PtNP nanocomposite material is that the activation energy can be finely tuned by the PBLG degree of polymerization. Finally, an important outcome of this work is the investigation of the dielectric relaxation process in PBLG–PtNP under applied DC bias. We found that the activation energy decreases with increasing bias voltage for all degrees of polymerization of the PBLG molecule. This effect is interpreted in terms of electric field-induced alignment of the dipoles and of increased mobility of the polaronic charge carriers. The presence of piezoelectricity in the hybrid material gives the possibility to use the DC bias as a simple mean of monitoring the dynamical conductivity involving polaronic states.
- Published
- 2021
- Full Text
- View/download PDF
12. Aqueous ROPISA of α-amino acid N -carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy
- Author
-
Andrew J. Clulow, Pedro Salas-Ambrosio, Mark W. Grinstaff, Chloé Grazon, Olivier Sandre, Ségolène Antoine, Ben J. Boyd, Colin Bonduelle, Sébastien Lecommandoux, Emmanuel Ibarboure, Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), ISM team LAGON, Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Australian Synchrotron [Clayton], Monash Institute of Pharmaceutical Sciences [Parkville] (MIPS), Faculty of Pharmacy and Pharmaceutical Sciences - Monash University [Parkville], Monash university-Monash university, Boston University [Boston] (BU), CONACYT grant No. 548662, European Project: MSCA-IF-2016 749973,SENSHOR, European Project: 654000,H2020,H2020-INFRADEV-1-2014-1,SINE2020(2015), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and ANR-20-CE06-0020,ROPISA,Polymérisation par Ouverture de Cycle des N-carboxyanhydrides induit par auto-assemblage en milieux aqueux(2020)
- Subjects
Molar mass ,Aqueous solution ,Polymers and Plastics ,Chemistry ,Organic Chemistry ,Nanoparticle ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,0104 chemical sciences ,chemistry.chemical_compound ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,Polymer chemistry ,Amphiphile ,Copolymer ,0210 nano-technology ,Protein secondary structure - Abstract
International audience; Polymerization-induced self-assembly (PISA) is an efficient one-step process to obtain nanomaterials. In this work, aqueous ring-opening polymerization induced self-assembly (ROPISA) of α-amino acid N-carboxyanhydride (NCA) affords controllable well-defined nanoassemblies. ROPISA with the PEG5 kDa-NH2 macroinitiator and either the benzyl-L-glutamate NCA (BLGNCA) or L-leucine NCA (LeuNCA) monomer yields amphiphilic block copolymers, with different polypeptide molar masses, which spontaneously form nanostructures. In contrast to the previous PISA process where the hydrophobic to hydrophilic ratio was the main parameter defining nanomaterial morphology, the secondary structure of the polypeptides is the main driving force to stabilize the anisotropic rod-like nanostructures with this ROPISA process.
- Published
- 2021
- Full Text
- View/download PDF
13. Synthetic Polypeptide Polymers as Simplified Analogues of Antimicrobial Peptides
- Author
-
Pierre Verhaeghe, Pedro Salas-Ambrosio, Antoine Tronnet, Colin Bonduelle, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE07-0039,Therapeptics,Analogues Polymériques de Peptides Antimicrobiens à Potentiel Thérapeutique anti-Clostridium difficile(2017), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pore Forming Cytotoxic Proteins ,Polymers and Plastics ,polypeptides ,Polymers ,ring-opening polymerization ,anti-infective activity ,Antimicrobial peptides ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,amino-acid copolymers ,Biomaterials ,Materials Chemistry ,N carboxyanhydride ,synthetic polymers ,chemistry.chemical_classification ,Chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Polymer ,021001 nanoscience & nanotechnology ,Combinatorial chemistry ,Anti-Bacterial Agents ,0104 chemical sciences ,Amino acid ,[CHIM.POLY]Chemical Sciences/Polymers ,anti-infective agents ,0210 nano-technology ,amphiphilicity ,Antimicrobial Cationic Peptides ,Macromolecule ,N-carboxyanhydride - Abstract
International audience; Antimicrobial peptides (AMPs) are naturally occurring macromolecules made of amino acids that are potent broad-spectrum antibiotics with potential as novel therapeutic agents. This review aims to summarize the fundamental principles concerning the structure and mechanism of action of these AMPs, in order to guide the design of polymeric analogues that organic chemistry can generate. Among those simplified analogues, this review particularly focuses on those made of amino acids called polypeptide polymers: they are showing great potential by providing one of the best biomimetic and bioactive structures for further biomaterials science applications.
- Published
- 2021
- Full Text
- View/download PDF
14. Thermoinduced Crystallization-Driven Self-Assembly of Bioinspired Block Copolymers in Aqueous Solution
- Author
-
Min Lin, Zhibo Li, Chenhui Zhu, Colin Bonduelle, Rongye Li, Zhiwei Wang, Jing Sun, Zhekun Shi, Sébastien Lecommandoux, Qingdao University of Science and Technology, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Lawrence Berkeley National Laboratory [Berkeley] (LBNL)
- Subjects
Morphology ,Materials science ,Polymers and Plastics ,Polymers ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Micelle ,Phase Transition ,law.invention ,Biomaterials ,chemistry.chemical_compound ,law ,Amphiphile ,Materials Chemistry ,Copolymer ,Crystallization ,Solution chemistry ,Micelles ,Triethylene glycol ,chemistry.chemical_classification ,Aqueous solution ,Copolymers ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Nanostructures ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,chemistry ,Self-assembly ,0210 nano-technology ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] ,Transmission electron microscopy - Abstract
International audience; Delicate control over architectures via crystallization-driven self-assembly (CDSA) in aqueous solution, particularly combined with external stimuli, is rare and challenging. Here, we report a stepwise CDSA process thermally initiated from amphiphilic poly(N-allylglycine)-b-poly(N-octylglycine) (PNAG-b-PNOG) conjugated with thiol-terminated triethylene glycol monomethyl ethers ((PNAG-g-EG3)-b-PNOG) in aqueous solution. The diblock copolymers show a reversible thermoresponsive behavior with nearly identical cloud points in both heating and cooling runs. In contrast, the morphology transition of the assemblies is irreversible upon a heating–cooling cycle because of the presence of a confined domain arising from crystalline PNOG, which allows for the achievement of different nanostructured assemblies by the same polymer. We demonstrated that the thermoresponsive property of PNAG-g-EG3 initiates assembly kinetically that is subsequently promoted by crystallization of PNOG thermodynamically. The irreversible morphology transition behavior provides a convenient platform for comparing the cellular uptake efficiency of nanostructured assemblies with various morphologies that are otherwise similar.
- Published
- 2020
- Full Text
- View/download PDF
15. Bidimensional lamellar assembly by coordination of peptidic homopolymers to platinum nanoparticles
- Author
-
Mathilde Rigoulet, Bruno Chaudret, Angélique Gillet, Colin Bonduelle, Yannick Coppel, Simon Tricard, Pierre Roblin, Ghada Manai, Jérôme Esvan, Stéphanie Balor, Pier-Francesco Fazzini, Hend Houimel, Alfonso Ibarra, Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Instituto de Nanociencia de Aragón [Saragoza, España] (INA), University of Zaragoza - Universidad de Zaragoza [Zaragoza], Centre de Biologie Intégrative (CBI), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie Chimique (LGC), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE09-0007,MOSC,Chimie supraparticulaire orientée par des molécules(2018), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Bordeaux INP - BINP (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université de Bordeaux (FRANCE), and Universidad Zaragoza (SPAIN)
- Subjects
Materials science ,Polymers ,Science ,Metal Nanoparticles ,General Physics and Astronomy ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,Platinum nanoparticles ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,Polymerization ,Copolymer ,Génie chimique ,Molecular self-assembly ,Lamellar structure ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,lcsh:Science ,Polymer ,Platinum ,chemistry.chemical_classification ,Mesoscopic physics ,Multidisciplinary ,Photoelectron Spectroscopy ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Polymères ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Nanoparticles ,lcsh:Q ,Peptides ,0210 nano-technology ,Hybrid material ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
A key challenge for designing hybrid materials is the development of chemical tools to control the organization of inorganic nanoobjects at low scales, from mesoscopic (~µm) to nanometric (~nm). So far, the most efficient strategy to align assemblies of nanoparticles consists in a bottom-up approach by decorating block copolymer lamellae with nanoobjects. This well accomplished procedure is nonetheless limited by the thermodynamic constraints that govern copolymer assembly, the entropy of mixing as described by the Flory–Huggins solution theory supplemented by the critical influence of the volume fraction of the block components. Here we show that a completely different approach can lead to tunable 2D lamellar organization of nanoparticles with homopolymers only, on condition that few elementary rules are respected: 1) the polymer spontaneously allows a structural preorganization, 2) the polymer owns functional groups that interact with the nanoparticle surface, 3) the nanoparticles show a surface accessible for coordination., Precise organization of nanoparticles and polymers for the design of hybrid materials remains a challenging task. Here, the authors show a convenient way to organize nanoobjects by preorganization of inorganic particles in presence of a functional peptidic homopolymer.
- Published
- 2020
- Full Text
- View/download PDF
16. Amphiphilic Nucleobase-Containing Polypeptide Copolymers—Synthesis and Self-Assembly
- Author
-
Sébastien Lecommandoux, Colin Bonduelle, Khalid Ferji, Michel Nguyen, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique Macromoléculaire (LCPM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Polymers and Plastics ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Article ,Nucleobase ,lcsh:QD241-441 ,amphiphilic polypeptide ,chemistry.chemical_compound ,lcsh:Organic chemistry ,Amphiphile ,Copolymer ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,DNA binding ,nucleobase ,chemistry.chemical_classification ,Chemistry ,General Chemistry ,Polymer ,021001 nanoscience & nanotechnology ,Combinatorial chemistry ,sequential ring-opening polymerization ,3. Good health ,0104 chemical sciences ,Thymine ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,spontaneous self-assembly ,Azide ,Self-assembly ,0210 nano-technology ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
Nucleobase-containing polymers are an emerging class of building blocks for the self-assembly of nanoobjects with promising applications in nanomedicine and biology. Here we present a macromolecular engineering approach to design nucleobase-containing polypeptide polymers incorporating thymine that further self-assemble in nanomaterials. Diblock and triblock copolypeptide polymers were prepared using sequential ring-opening polymerization of &gamma, Benzyl-l-glutamate N-carboxyanhydride (BLG-NCA) and &gamma, Propargyl-l-glutamate N-carboxyanhydride (PLG-NCA), followed by an efficient copper(I)-catalyzed azide alkyne cycloaddition (CuAAc) functionalization with thymidine monophosphate. Resulting amphiphilic copolymers were able to spontaneously form nanoobjects in aqueous solutions avoiding a pre-solubilization step with an organic solvent. Upon self-assembly, light scattering measurements and transmission electron microscopy (TEM) revealed the impact of the architecture (diblock versus triblock) on the morphology of the resulted nanoassemblies. Interestingly, the nucleobase-containing nanoobjects displayed free thymine units in the shell that were found available for further DNA-binding.
- Published
- 2020
- Full Text
- View/download PDF
17. Nucleopolypeptides with DNA-triggered α helix-to-β sheet transition
- Author
-
Jean-Luc Stigliani, Colin Bonduelle, Geneviève Pratviel, Michel Nguyen, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Circular dichroism ,Stereochemistry ,Beta sheet ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Protein Structure, Secondary ,Catalysis ,Nucleobase ,chemistry.chemical_compound ,Materials Chemistry ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Nucleotide ,Protein secondary structure ,chemistry.chemical_classification ,Chemistry ,Circular Dichroism ,Metals and Alloys ,DNA ,General Chemistry ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Helix ,Ceramics and Composites ,Peptides ,0210 nano-technology - Abstract
International audience; Synthetic polypeptides are versatile polymers outstandingly relevant to prepare bioinspired materials. In this work, we present a new class of smart polypeptide polymers, called nucleopolypeptides, having lateral chains functionalized with thymidine nucleobases. Structural studies performed by circular dichroism have revealed that the secondary structure of the polymers was influenced by nucleotide interaction and DNA sequence variation affording a selective helix-to-beta sheet transition with oligo(AAAAA)6.
- Published
- 2017
- Full Text
- View/download PDF
18. Combination of photodynamic therapy and gene silencing achieved through the hierarchical self-assembly of porphyrin-siRNA complexes
- Author
-
Magali Gary-Bobo, Nabila Laroui, Geneviève Pratviel, Maëva Coste, Sébastien Ulrich, Colin Bonduelle, Yannick Bessin, Nadir Bettache, Laure Lichon, Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] (IBMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre de Biochimie Structurale [Montpellier] (CBS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre de recherche en Biologie Cellulaire (CRBM), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Ministère Algérien de l’Enseignement Supérieur et de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and ANR-17-CE07-0042,SELFBIOMAT,Auto-Assemblage Hiérarchique de BioMatériaux(2017)
- Subjects
Porphyrins ,media_common.quotation_subject ,medicine.medical_treatment ,Pharmaceutical Science ,Photodynamic therapy ,02 engineering and technology ,030226 pharmacology & pharmacy ,Inhibitor of Apoptosis Proteins ,Flow cytometry ,law.invention ,Porphyrin ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Gene therapy ,Confocal microscopy ,law ,Cell Line, Tumor ,medicine ,Humans ,Gene silencing ,[CHIM]Chemical Sciences ,Photosensitizer ,Gene Silencing ,RNA, Small Interfering ,Combination therapy ,Internalization ,media_common ,Photosensitizing Agents ,medicine.diagnostic_test ,Genetic Therapy ,021001 nanoscience & nanotechnology ,supramolecular self-assembly ,3. Good health ,Photochemotherapy ,chemistry ,photodynamic therapy ,siRNA ,Cancer cell ,Biophysics ,0210 nano-technology - Abstract
International audience; In this work, we implemented a supramolecular approach in order to combine photodynamic therapy (PDT) with gene therapy. We made use of a simple cationic guanidylated porphyrin (H2‑PG) with the hypothesis that porphyrin aggregates should be capable of complexing siRNA through multivalent interactions and thus contribute to its intracellular delivery, while remaining active photosensitizers for PDT. The PDT effect of H2‑PG was shown by incubating human breast cancer cells (MDA-MB-231) with H2‑PG followed by light-irradiation at 405 nm. On the other hand, while siRNA do not enter cells alone, we showed, by fluorescence confocal microscopy and flow cytometry, that H2‑PG promotes the internalization of Atto-488 siRNA. Finally, studying the combined PDT and delivery of siRNA directed against inhibitory apoptotic protein (IAP) family, we found an additive effect of the two therapies, thereby demonstrating that H2‑PG is capable of acting both as a photosensitizer and supramolecular siRNA vector.
- Published
- 2019
- Full Text
- View/download PDF
19. Cover Picture: Aqueous Ring‐Opening Polymerization‐Induced Self‐Assembly (ROPISA) of N‐Carboxyanhydrides (Angew. Chem. Int. Ed. 2/2020)
- Author
-
Emmanuel Ibarboure, Colin Bonduelle, Elisabeth Garanger, Alix Buol, Sébastien Lecommandoux, Pedro Salas-Ambrosio, Mark W. Grinstaff, and Chloé Grazon
- Subjects
Aqueous solution ,Polymerization ,Chemistry ,INT ,Polymer chemistry ,Amphiphile ,Cover (algebra) ,General Chemistry ,Self-assembly ,Ring-opening polymerization ,Catalysis - Published
- 2020
- Full Text
- View/download PDF
20. Antitrypanosomatid Pharmacomodulation at Position 3 of the 8-Nitroquinolin-2(1 H)-one Scaffold Using Palladium-Catalysed Cross-Coupling Reactions
- Author
-
Pierre Verhaeghe, Maryam Rastegari, Susan Wyllie, Clotilde Boudot, Alexis Valentin, Bertrand Courtioux, Colin Bonduelle, Hussein El-Kashef, Julien Pedron, Sandra Bourgeade-Delmas, Geneviève Pratviel, Lucie Paloque, Mansour Abdoulaye, Alix Sournia-Saquet, Alan H. Fairlamb, Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT-FR 2599), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Neuroépidémiologie Tropicale (NET), CHU Limoges-Institut d'Epidémiologie Neurologique et de Neurologie Tropicale-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Génomique, Environnement, Immunité, Santé, Thérapeutique (GEIST), Université de Limoges (UNILIM)-Université de Limoges (UNILIM), Pharmacochimie et Biologie pour le Développement (PHARMA-DEV), Institut de Recherche pour le Développement (IRD)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées, Department of Chemistry, Assiut University, Department of Biochemistry, Medical Sciences Institute, Dundee University, Dundee, Grelier, Elisabeth, Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut de Recherche pour le Développement (IRD), Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut de Chimie de Toulouse (ICT), and Université de Toulouse (UT)
- Subjects
0301 basic medicine ,Stereochemistry ,Trypanosoma brucei brucei ,trypanosomatids ,Trypanosoma brucei ,Quinolones ,Biochemistry ,Coupling reaction ,Article ,Catalysis ,03 medical and health sciences ,Nitroreductase ,Parasitic Sensitivity Tests ,Drug Discovery ,parasitic diseases ,medicine ,Humans ,General Pharmacology, Toxicology and Pharmaceutics ,Leishmania infantum ,Amastigote ,Cytotoxicity ,antikinetoplastid pharmacomodulation ,Pharmacology ,biology ,Molecular Structure ,Chemistry ,8-nitroquinolin-2(1H)-ones ,Organic Chemistry ,Nitroquinolines ,Hep G2 Cells ,parasitic nitroreductases ,biology.organism_classification ,Trypanocidal Agents ,030104 developmental biology ,Mechanism of action ,[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie ,Molecular Medicine ,palladium-catalysed cross-coupling ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,medicine.symptom ,Selectivity ,Palladium ,Leishmania donovani - Abstract
International audience; An antikinetoplastid pharmacomodulation study at position 3 of the recently described hit molecule 3-bromo-8-nitroquinolin-2(1H)-one was conducted. Twenty-four derivatives were synthesised using the Suzuki-Miyaura cross-coupling reaction and evaluated in vitro on both Leishmania infantum axenic amastigotes and Trypanosoma brucei brucei trypomastigotes. Introduction of a para-carboxyphenyl group at position 3 of the scaffold led to the selective antitrypanosomal hit molecule 3-(4-carboxyphenyl)-8-nitroquinolin-2(1H)-one (21) with a lower reduction potential (-0.56 V) than the initial hit (-0.45 V). Compound 21 displays micromolar antitrypanosomal activity (IC50 =1.5 μm) and low cytotoxicity on the human HepG2 cell line (CC50 =120 μm), having a higher selectivity index (SI=80) than the reference drug eflornithine. Contrary to results previously obtained in this series, hit compound 21 is inactive toward L. infantum and is not efficiently bioactivated by T. brucei brucei type I nitroreductase, which suggests the existence of an alternative mechanism of action.
- Published
- 2018
- Full Text
- View/download PDF
21. Ionic Polypeptide Polymers with Unusual β-Sheet Stability
- Author
-
Geneviève Pratviel, Jean-Luc Stigliani, Colin Bonduelle, Christian Bijani, Pierre Verhaeghe, Michel Nguyen, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Models, Molecular ,Polymers and Plastics ,Polymers ,Beta sheet ,Ionic bonding ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biomaterials ,Protein structure ,Polymer chemistry ,Materials Chemistry ,Side chain ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Solubility ,chemistry.chemical_classification ,Ions ,Aqueous solution ,Molecular Structure ,Water ,Polymer ,DNA ,Hydrogen-Ion Concentration ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Amino acid ,chemistry ,Protein Conformation, beta-Strand ,0210 nano-technology ,Peptides - Abstract
International audience; Incorporating charged amino acid side chains in polypeptide polymer backbones to improve solubility usually leads to reduced secondary structuring. Here we show that highly water soluble (>15 mg.mL–1) β-sheets can be obtained via nucleotide monophosphate grafting onto simple poly(γ-propargyl-L-glutamate) backbone. This synthetic methodology has been applied to the synthesis of thymidine-based nucleopolypeptides presenting stable β-sheet conformation in aqueous solutions with pH values comprised between 4 and 8. These polymeric analogues of nucleoproteins exhibited selective interaction with simple DNA sequences displaying adenine.
- Published
- 2018
- Full Text
- View/download PDF
22. Secondary structures of synthetic polypeptide polymers
- Author
-
Colin Bonduelle, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,Polymers and Plastics ,Organic Chemistry ,Bioengineering ,Peptide ,Nanotechnology ,02 engineering and technology ,Polymer ,Advanced materials ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,0104 chemical sciences ,chemistry ,Polymerization ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,0210 nano-technology ,Protein secondary structure ,Macromolecule - Abstract
International audience; Synthetic peptide-based polymers represent a unique class of macromolecules able to mimic the properties of natural proteins in materials sciences since (1) they present the same macromolecular backbone as do proteins, (2) they can be obtained in large scale and in only one step by using the ROP (Ring-Opening Polymerization) methodology, and (3) they can fold into different secondary structures in the same way as do proteins. The control of this structuring ability paves the way to a wide range of applications in materials science, for which uses of natural proteins remain limited. In this review article, the fundamental principles of polypeptide polymer structuring are summarized. It is also highlighted here, how tuning the polypeptide secondary structure could be a key step to modulate various properties in advanced materials (size, rigidity, self-assembly, etc.).
- Published
- 2018
- Full Text
- View/download PDF
23. Cd2+ coordination: An efficient structuring switch for polypeptide polymers
- Author
-
Julien Aujard-Catot, Christian Bijani, Geneviève Pratviel, Michel Nguyen, Colin Bonduelle, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
chemistry.chemical_classification ,Circular dichroism ,Polymers and Plastics ,Organic Chemistry ,Bioengineering ,02 engineering and technology ,Polymer ,Stimulus (physiology) ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,Structuring ,Redox ,Buffer (optical fiber) ,0104 chemical sciences ,Metal ,chemistry ,visual_art ,visual_art.visual_art_medium ,Biophysics ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,0210 nano-technology - Abstract
International audience; Stimuli-responsive polypeptides have practical applications in devices and therapeutic delivery. Here we report that coordination to Cd2+ metal species can be used as a robust stimulus to control both, α-helix and β-sheet secondary structuring of polypeptide polymers whose metal responsiveness was achieved in the presence of a competitive buffer. As evidenced by circular dichroism analyses, secondary structuring can be easily reversed using “sequestering” external ligands, such as EDTA, that are widely used in industry, to finally design a multivalent polypeptide backbone combining metal responsiveness to two other stimuli, pH and redox conditions.
- Published
- 2018
- Full Text
- View/download PDF
24. Functionalization of Alkyne-Terminated Thermally Hydrocarbonized Porous Silicon Nanoparticles With Targeting Peptides and Antifouling Polymers: Effect on the Human Plasma Protein Adsorption
- Author
-
Chang-Fang Wang, Jarno Salonen, Jussi Rytkönen, Janne Raula, Sérgio Frascino Müller de Almeida, Ale Närvänen, Sébastien Lecommandoux, Errnei M. Makila, Hélder A. Santos, Colin Bonduelle, Jouni Hirvonen, Univ Helsinki, Fac Pharm, Div Pharmaceut Chem & Technol, Faculty of Pharmacy [Helsinki], University of Helsinki-University of Helsinki, Laboratory of Industrial Physics ([Turku], Department of Physics and Astronomy [Turku], University of Turku-University of Turku, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Univ Eastern Finland, Sch Pharm, University of Eastern Finland, Aalto Univ Sch Sci, Dept Appl Phys, and Aalto University
- Subjects
Polymers ,Nanoparticle ,Peptide ,02 engineering and technology ,01 natural sciences ,CORONA ,Nanomaterials ,General Materials Science ,IN-VIVO ,chemistry.chemical_classification ,Drug Carriers ,WALLED CARBON NANOTUBES ,ta214 ,Blood Proteins ,Polymer ,HEPG2 CELLS ,021001 nanoscience & nanotechnology ,protein adsorption ,porous silicon ,Alkynes ,click chemistry ,Click chemistry ,0210 nano-technology ,Porosity ,Silicon ,Materials science ,suface modification ,ta221 ,Nanotechnology ,CELLULAR UPTAKE ,010402 general chemistry ,Porous silicon ,Cell Line ,Cell Adhesion ,Humans ,CANCER-CELLS ,ta218 ,RELEASE ,ta114 ,ORAL-DRUG DELIVERY ,0104 chemical sciences ,MESOPOROUS MATERIALS ,cell-nanoparticle interaction ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,chemistry ,Nanoparticles ,Surface modification ,Peptides ,Protein adsorption - Abstract
International audience; Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications.
- Published
- 2015
- Full Text
- View/download PDF
25. Smart Poly(imidazoyl-l-lysine): Synthesis and Reversible Helix-to-Coil Transition at Neutral pH
- Author
-
Estefania Piedra-Arroni, Fatma Makni, Laura Severac, Jean-Luc Stigliani, Geneviève Pratviel, Colin Bonduelle, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
lcsh:QD241-441 ,Imidazole-containing polymers ,lcsh:Organic chemistry ,Helix-to-coil transition ,food and beverages ,Smart polypeptides ,Poly(lysine) ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Article ,pH-responsive - Abstract
International audience; Polypeptide polymers can adopt natural protein secondary structures such as α-helices or β-sheets, and this unique feature is at the origin of some intriguing physico–chemical properties. In this work, we present how side chain imidazoylation of a poly(l-lysine) scaffold affords the preparation of poly(histidine) counterparts exhibiting α-helix conformation. This structuring behavior is reversible and can be controlled by means of pH and or temperature changes.
- Published
- 2017
- Full Text
- View/download PDF
26. Titelbild: Aqueous Ring‐Opening Polymerization‐Induced Self‐Assembly (ROPISA) of N‐Carboxyanhydrides (Angew. Chem. 2/2020)
- Author
-
Elisabeth Garanger, Chloé Grazon, Emmanuel Ibarboure, Pedro Salas-Ambrosio, Mark W. Grinstaff, Colin Bonduelle, Alix Buol, and Sébastien Lecommandoux
- Subjects
Aqueous solution ,Chemistry ,Polymer chemistry ,General Medicine ,Self-assembly ,Ring-opening polymerization - Published
- 2019
- Full Text
- View/download PDF
27. Synthesis and properties of butyl rubber-poly(ethylene oxide) graft copolymers with high PEO content
- Author
-
Lorenzo Ferrari, Solmaz Karamdoust, Colin Bonduelle, Elizabeth R. Gillies, Ryan C. Amos, Bethany A. Turowec, and Sharon Guo
- Subjects
Materials science ,Polymers and Plastics ,Organic Chemistry ,Oxide ,Butyl rubber ,chemistry.chemical_compound ,chemistry ,Natural rubber ,visual_art ,Polymer chemistry ,Materials Chemistry ,visual_art.visual_art_medium ,Copolymer ,Self-assembly ,Poly ethylene - Published
- 2013
- Full Text
- View/download PDF
28. An oxygenated rubber derivative as a compatibilizer for the preparation of polymer films
- Author
-
Solmaz Karamdoust, Colin Bonduelle, Matthew J. McEachran, and Elizabeth R. Gillies
- Subjects
chemistry.chemical_classification ,Materials science ,technology, industry, and agriculture ,Surfaces and Interfaces ,General Chemistry ,Butyl rubber ,Compatibilization ,Polymer ,engineering.material ,Surfaces, Coatings and Films ,body regions ,Contact angle ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,chemistry ,Coating ,Natural rubber ,visual_art ,Polycaprolactone ,engineering ,visual_art.visual_art_medium ,Composite material ,Methyl methacrylate - Abstract
The preparation of multilayered polymer films is of significant interest for various applications, but is often hindered by the inherent incompatibilities between polymers. Described here is the use of an epoxidized butyl rubber as a compatibilizer layer. This polymer can be coated onto butyl rubber, despite the small number of epoxidized units (~2.2 mol%), allows for the deposition of uniform layers of a diverse array of polymers including poly(vinyl stearate) (PVS), poly(methyl methacrylate) (PMMA), polycaprolactone (PCL), and poly(ethylene oxide) (PEO). The films on epoxidized rubber were compared with those prepared directly on unmodified rubber using techniques including atomic force microscopy and contact angle measurements. In addition, in the case of PEO, it was demonstrated that the uniformity of the coating plays a significant role in conferring the desirable property of resistance to protein adsorption. Thus, this oxygenated rubber derivative may serve as a versatile material for various coating applications.
- Published
- 2013
- Full Text
- View/download PDF
29. Multivalent effect of glycopolypeptide based nanoparticles for galectin binding
- Author
-
Jin Huang, Sébastien Lecommandoux, Cony Gauche, Colin Bonduelle, Hugo Oliveira, Andreas Heise, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), INSERM, U1026, Tissue Bioengn, Univ Bordeaux, Université de Bordeaux (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Dublin City Univ, Sci Chem Sci, Dublin City University [Dublin] (DCU), Pol Chem & Biomat Lab, Dept Pharmaceut & Med Chem, Dublin, Royal College of Surgery in Ireland, Dublin 2, Team 3 LCPO : Polymer Self-Assembly & Life Sciences, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Glycan ,Polymers ,Surface Properties ,Galectins ,Nanoparticle ,Lactose ,02 engineering and technology ,Plasma protein binding ,010402 general chemistry ,Polysaccharide ,Microscopy, Atomic Force ,01 natural sciences ,Catalysis ,chemistry.chemical_compound ,Polysaccharides ,Amphiphile ,Materials Chemistry ,Particle Size ,Galectin ,chemistry.chemical_classification ,biology ,Metals and Alloys ,Glycopeptides ,General Chemistry ,Galactan ,021001 nanoscience & nanotechnology ,Polymeric nanoparticles ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Biochemistry ,Ceramics and Composites ,biology.protein ,Nanoparticles ,0210 nano-technology ,Protein Binding - Abstract
International audience; Synthetic glycopolypeptides are versatile glycopolymers used to conceive bioinspired nanoassemblies. In this work, novel amphiphilic glycopolypeptides were designed to incorporate lactose or galactan in order to prepare polymeric nanoassemblies with sizes below 50 nm. The bioactivity of the two different outer surface sugar units was evaluated by defining glycan relative binding affinities to human galectins 1 and 3. A specific multivalent effect was found only for polymeric nanoparticles displaying galactan with a significant increase of the binding activity as compared to free glycan in solution. Such synthetic designs present great potential as therapeutic tools to address galectin related pathologies.
- Published
- 2016
- Full Text
- View/download PDF
30. Smart metallopoly(l-glutamic acid) polymers: Reversible helix-to-coil transition at neutral pH
- Author
-
Charles Louis Serpentini, Laura Severac, Geneviève Pratviel, Fatma Makni, Colin Bonduelle, Estefanía Piedra-Arroni, Sébastien Lecommandoux, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Interactions moléculaires et réactivité chimique et photochimique (IMRCP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), IDeAS - Interfaces Dynamiques et Assemblages Stimulables (IDeAS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
- Subjects
Helix-to-coil transitions ,Polymers ,General Chemical Engineering ,Poly-(L-glutamic acid) ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Smart polymer ,Coordination complex ,Neutral pH ,Polymer chemistry ,[CHIM]Chemical Sciences ,Scaffolds (biology) ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Aqueous solution ,technology, industry, and agriculture ,External stimulus ,food and beverages ,General Chemistry ,Glutamic acid ,Polymer ,021001 nanoscience & nanotechnology ,L-glutamic acids ,humanities ,Polymeric scaffold ,0104 chemical sciences ,Amino acid ,Solutions ,Co-ordination chemistries ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Electromagnetic coil ,Helix ,Amino acids ,Smart polymers ,0210 nano-technology ,Coordination reactions - Abstract
International audience; Among the smart polymers, smart polypeptides have a unique polymeric scaffold made of amino acids whose structuring can be controlled by an external stimuli. Herein we present how coordination chemistry to Zn species can be reversibly used to control the helix-to-coil transition of synthetic poly(l-glutamic acid) (PGA) polymers at a neutral pH of 7 in aqueous solutions.
- Published
- 2016
- Full Text
- View/download PDF
31. Synthesis of asymmetric guanidiniumphenyl-aminophenyl porphyrins
- Author
-
Geneviève Pratviel, Colin Bonduelle, Arnaud Perrier, Emmanuelle Mothes, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
010405 organic chemistry ,Cationic porphyrin ,Asymmetric porphyrin ,General Chemistry ,010402 general chemistry ,01 natural sciences ,Porphyrin ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Polymer chemistry ,Meso-substituted porphyrins ,Organic chemistry ,Amine gas treating ,[CHIM.COOR]Chemical Sciences/Coordination chemistry - Abstract
The symmetric meso-tetrakis(4-aminophenyl)porphyrin was reacted with nonstoichiometric amount of [Formula: see text],[Formula: see text]-bis(tert-butoxycarbonyl)-[Formula: see text]-methylisothiourea with respect to the amine functions of the porphyrin to afford (after deprotection of the Boc residues) the asymmetric guanidiniumphenyl-aminophenyl porphyrins carrying two or three guanidiniumphenyl substituents at the meso-position. The adjacent and opposite isomers of the bis(guanidiniumphenyl) modified porphyrins were isolated separately.
- Published
- 2016
- Full Text
- View/download PDF
32. Biologically Active Polymersomes from Amphiphilic Glycopeptides
- Author
-
Colin Bonduelle, Jin Huang, Julie Thevenot, Sébastien Lecommandoux, Andreas Heise, Control Systems, Sch Chem Sci (Dublin City Univ), Dublin City University [Dublin] (DCU), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Models, Molecular ,Glycosylation ,Polymers ,Molecular Conformation ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Micelle ,Catalysis ,GENE DELIVERY ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,BINDING ,Amphiphile ,Polymer chemistry ,Copolymer ,RECOGNITION PROPERTIES ,DRUG-DELIVERY ,Glycoproteins ,Chemistry ,COPOLYMER VESICLES ,GLYCOPROTEIN ,General Chemistry ,021001 nanoscience & nanotechnology ,Cycloaddition ,0104 chemical sciences ,BLOCK-COPOLYMERS ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,THERAPEUTICS ,Polymersome ,Click chemistry ,Click Chemistry ,LACTOSE ,0210 nano-technology ,Hydrophobic and Hydrophilic Interactions ,MULTIPLE MORPHOLOGIES - Abstract
International audience; Polypeptide block copolymers with different block length ratios were obtained by sequential ring-opening polymerization of benzyl-L-glutamate and propargylglycine (PG) N-carboxyanhydrides. Glycosylation of the poly(PG) block was obtained by Huisgens cycloaddition "click" reaction using azide-functionalized galactose. All copolymers were self-assembled using the nanoprecipitation method to obtain spherical and wormlike micelles as well as polymersomes depending on the block length ratio and the nanoprecipitation conditions. These structures display bioactive galactose units in the polymersome shell, as proven by selective lectin binding experiments.
- Published
- 2011
- Full Text
- View/download PDF
33. Synthesis and Assembly of Butyl Rubber–Poly(ethylene oxide) Graft Copolymers: From Surface Patterning to Resistance to Protein Adsorption
- Author
-
Elizabeth R. Gillies, Solmaz Karamdoust, and Colin Bonduelle
- Subjects
chemistry.chemical_classification ,Materials science ,Polymers and Plastics ,Ethylene oxide ,Organic Chemistry ,technology, industry, and agriculture ,Oxide ,macromolecular substances ,Polymer ,Butyl rubber ,Inorganic Chemistry ,chemistry.chemical_compound ,chemistry ,Polymer chemistry ,Materials Chemistry ,Copolymer ,Amine gas treating ,Thin film ,Protein adsorption - Abstract
The patterning of copolymers on surfaces is of interest both for a fundamental understanding of polymer assembly processes and for applications ranging from microelectronics to biomaterials. Graft copolymers can provide new opportunities to control polymer composition and architecture, thus opening possibilities for new assembly processes and patterns. In this work, the reaction of a butyl rubber derivative functionalized with activated carbonates along the polymer backbone was reacted with amine terminated poly(ethylene oxide) (PEO–NH2) to provide butyl rubber–PEO graft copolymers. The high efficiency of this reaction allowed for control of the PEO content by the number of equivalents of PEO–NH2 used and its molecular weight, providing a small library of graft copolymers. This approach also provided butyl rubber–PEO graft copolymers with unprecedentedly high PEO content. Thin films of the polymers, prepared by spin-casting were studied by a number of techniques including atomic force microscopy, polarize...
- Published
- 2011
- Full Text
- View/download PDF
34. Preparation of Protein- and Cell-Resistant Surfaces by Hyperthermal Hydrogen Induced Cross-Linking of Poly(ethylene oxide)
- Author
-
Elizabeth R. Gillies, Colin Bonduelle, and Woon M. Lau
- Subjects
Silicon ,Materials science ,Hydrogen ,Surface Properties ,Oxide ,chemistry.chemical_element ,Butyl rubber ,Cell Line ,Polyethylene Glycols ,Mice ,chemistry.chemical_compound ,Adsorption ,Coated Materials, Biocompatible ,Polymer chemistry ,Cell Adhesion ,Animals ,General Materials Science ,chemistry.chemical_classification ,Ethylene oxide ,technology, industry, and agriculture ,Proteins ,Polymer ,Fibroblasts ,chemistry ,Chemical engineering ,Surface modification ,Protein adsorption - Abstract
The functionalization of surfaces with poly(ethylene oxide) (PEO) is an effective means of imparting resistance to the adsorption of proteins and the attachment and growth of cells, properties that are critical for many biomedical applications. In this work, a new hyperthermal hydrogen induced cross-linking (HHIC) method was explored as a simple one-step approach for attaching PEO to surfaces through the selective cleavage of C-H bonds and subsequent cross-linking of the resulting carbon radicals. In order to study the effects of the process on the polymer, PEO-coated silicon wafers were prepared and the effects of different treatment times were investigated. Subsequently, using an optimized treatment time and a modified butyl polymer with increased affinity for PEO, the technique was applied to butyl rubber surfaces. All of the treated surfaces exhibited significantly reduced protein adsorption and cell growth relative to control surfaces and compared favorably with surfaces that were functionalized with PEO using conventional chemical methods. Thus HHIC is a simple and effective means of attaching PEO to non-functional polymer surfaces.
- Published
- 2011
- Full Text
- View/download PDF
35. Dendritic surface functionalization of biodegradable polymer assemblies
- Author
-
Colin Bonduelle, Elizabeth R. Gillies, Ryan C. Amos, and Ali Nazemi
- Subjects
Polymers and Plastics ,Vesicle ,Organic Chemistry ,Conjugated system ,Biodegradable polymer ,Small molecule ,Micelle ,chemistry.chemical_compound ,chemistry ,Dendrimer ,Polymer chemistry ,Materials Chemistry ,Surface modification ,Azide - Abstract
The functionalization of nanomaterials with dendritic surface moieties was recently demonstrated to be an effective means of displaying biological ligands and potentially modulating the biological properties of these materials. With the aim of extending this surface functionalization approach to biodegradable polymer assemblies, poly(ethylene oxide)-polycaprolactone (PEO-PCL) block copolymers with terminal azide or methoxy groups were prepared and were assembled to form micelles or vesicles with varying loadings of surface azides. Dendrons bearing peripheral amines, guanidines, or hydroxyls were prepared and conjugated to the assemblies, and the conjugation yields were measured and compared as a function of azide loading and assembly type (micelle versus vesicle). A small molecule rhodamine derivative was also conjugated, allowing the effect of sterics to be studied. The effects of the surface functionalization on the aggregation state of the assemblies were studied by light scattering and transmission electron microscopy. Overall, the results revealed interesting differences between the two systems with respect to both the reaction yields and the stabilities. Furthermore, micelles functionalized with dendrons bearing peripheral guanidines were found to exhibit enhanced cell uptake relative to control micelles, demonstrating that this approach can be used to modulate the biological properties of the materials.
- Published
- 2011
- Full Text
- View/download PDF
36. Patterning of a Butyl Rubber−Poly(ethylene oxide) Graft Copolymer Revealed by Protein Adsorption
- Author
-
Elizabeth R. Gillies and Colin Bonduelle
- Subjects
Nanostructure ,Materials science ,Polymers and Plastics ,Organic Chemistry ,Oxide ,Butyl rubber ,Inorganic Chemistry ,chemistry.chemical_compound ,chemistry ,Polymer chemistry ,Materials Chemistry ,Copolymer ,Thin film ,Poly ethylene ,Protein adsorption - Published
- 2010
- Full Text
- View/download PDF
37. Dendritic Guanidines as Efficient Analogues of Cell Penetrating Peptides
- Author
-
Elizabeth R. Gillies and Colin Bonduelle
- Subjects
Cell ,lcsh:Medicine ,lcsh:RS1-441 ,Pharmaceutical Science ,Review ,Conjugated system ,dendrimer ,guanidine ,010402 general chemistry ,01 natural sciences ,lcsh:Pharmacy and materia medica ,03 medical and health sciences ,chemistry.chemical_compound ,Dendrimer ,Drug Discovery ,medicine ,Guanidine ,030304 developmental biology ,0303 health sciences ,lcsh:R ,toxicity ,Combinatorial chemistry ,0104 chemical sciences ,medicine.anatomical_structure ,cell penetrating peptide ,chemistry ,drug delivery ,Drug delivery ,Cell-penetrating peptide ,Molecular Medicine ,cell-uptake ,Intracellular ,Conjugate - Abstract
The widespread application of cell penetrating agents to clinical therapeutics and imaging agents relies on the ability to prepare them on a large scale and to readily conjugate them to their cargos. Dendritic analogues of cell penetrating peptides, with multiple guanidine groups on their peripheries offer advantages as their high symmetry allows them to be efficiently synthesized, while orthogonal functionalities at their focal points allow them to be conjugated to cargo using simple synthetic methods. Their chemical structures and properties are also highly tunable as their flexibility and the number of guanidine groups can be tuned by altering the dendritic backbone or the linkages to the guanidine groups. This review describes the development of cell-penetrating dendrimers based on several different backbones, their structure-property relationships, and comparisons of their efficacies with those of known cell penetrating peptides. The toxicities of these dendritic guanidines are also reported as well as their application towards the intracellular delivery of biologically significant cargos including proteins and nanoparticles.
- Published
- 2010
- Full Text
- View/download PDF
38. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI
- Author
-
Julie Thevenot, Philippe Massot, Colin Bonduelle, Sophie Laurent, Luce Vander Elst, Olivier Sandre, Sylvain Miraux, Robert N. Muller, Dimitri Stanicki, Sébastien Lecommandoux, Adeline Hannecart, Aurélien J. Trotier, NMR Laboratory, Université de Mons, Université de Mons (UMons), Center for Microscopy and Molecular Imaging (CMMI), Académie Universitaire Wallonie-Bruxelles, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de résonance magnétique des systèmes biologiques (CRMSB), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), ANR-13-BS08-0017,MagnetoChemoBlast,Magnéto-Chimiothérapie : Modélisation de la Délivrance Induite par Champ Magnétique Radiofréquence d'Anticancéreux par des Nano-Vésicules Polymères et Suivi par IRM d'un Modèle de Glioblastome(2013), European Project: COST Action TD1402,RADIOMAG, NMR and Molecular Imaging Laboratory [Mons], University of Mons [Belgium] (UMONS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)
- Subjects
SUPERPARAMAGNETIC PARTICLES ,Materials science ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,02 engineering and technology ,010402 general chemistry ,WATER DIFFUSIVITY ,01 natural sciences ,Lower critical solution temperature ,THERMOMETRY ,chemistry.chemical_compound ,Nuclear magnetic resonance ,Dynamic light scattering ,BIOMEDICAL APPLICATIONS ,General Materials Science ,DRUG-DELIVERY ,PROTON RELAXATION ,chemistry.chemical_classification ,MAGNETIC NANOPARTICLES ,Transition temperature ,IRON-OXIDE NANOPARTICLES ,MRI CONTRAST AGENTS ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,SURFACE FUNCTIONALIZATION ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,BLOCK-COPOLYMERS ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Silanization ,Spin echo ,Magnetic nanoparticles ,0210 nano-technology ,Iron oxide nanoparticles - Abstract
International audience; Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine (R) M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 degrees C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 degrees C, for M-2070 (a second transition was also detected above 80 degrees C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r(2)) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r(1)) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 degrees C. For all tested frequencies except 300 MHz, both r(1) and r(2) decrease with temperature and show an inflection point at 25 degrees C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T-1-or T-2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T-2*-weighted sequence over the entire temperature range 15-50 degrees C render these LCST polymer coated USPIOs interesting positive contrast agents, also working as "nano-thermometers".
- Published
- 2015
- Full Text
- View/download PDF
39. Synthetic glycopolypeptides: synthesis and self-assembly of poly([gamma]-benzyl-l-glutamate)-glycosylated dendron hybrids
- Author
-
Sébastien Lecommandoux, Namrata Jain, Colin Bonduelle, Ariane Peyret, Elizabeth R. Gillies, John F. Trant, Khalid Ferji, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Department of Chemistry, University of Western Ontario, University of Western Ontario (UWO), Laboratoire de Chimie des polymères organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Université Sciences et Technologies - Bordeaux 1-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Univ Western Ontario, Dept Chem, and Univ of Western Ontario, Dept Chem & Chem & Biochem Engn
- Subjects
Dendrimers ,Polymers and Plastics ,Chemistry ,Organic Chemistry ,Galactose moieties ,Bioengineering ,Polymer architecture ,Degree of polymerization ,Dendrimer generation ,Biochemistry ,Polyester ,[CHIM.POLY]Chemical Sciences/Polymers ,Self assembly process ,Dendrimer ,Amphiphile ,Polymer chemistry ,Medicine and Health Sciences ,Copolymer ,Solvent exchanges ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Self-assembly ,Linear dendritic ,Macromolecule - Abstract
International audience; Nano-assemblies prepared from glycosylated macromolecules are promising systems for modulating or mimicking the interactions between natural carbohydrates and their receptors. In the current work, polyester dendrons bearing focal point alkynes and peripheral C-linked [small alpha]-galactose moieties were synthesized and coupled to helical poly([gamma]-benzyl-l-glutamate) (PBLG) to afford synthetic linear-dendritic glycopolypeptides. Both the dendrimer generation and the length of the PBLG were varied to provide a small library of amphiphiles with hydrophilic mass fractions ranging from 0.07 to 0.54. The self-assembly of the copolymers in water using a solvent exchange method was optimized and studied in detail. While the linear-dendritic copolymers composed of lower generation dendrons tended to aggregate, a copolymer composed of a 4th generation galactose-functionalized dendron and PBLG with a degree of polymerization of 28 formed micellar nano-assemblies whose size could be tuned by varying the self-assembly process. Overall, this study provides new insights into the effects of polymer architecture on self-assembly properties, while at the same time introducing a new platform for the preparation of bioactive nanoparticles.
- Published
- 2015
- Full Text
- View/download PDF
40. Synthesis, self-assembly, and degradation of amphiphilic triblock copolymers with fully photodegradable hydrophobic blocks
- Author
-
Sébastien Lecommandoux, Colin Bonduelle, Ali Nazemi, Elizabeth R. Gillies, J. Trevor McIntosh, Univ Western Ontario, Dept Chem, University of Western Ontario (UWO), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Univ of Western Ontario, Dept Chem & Chem & Biochem Engn
- Subjects
Polymersomes ,RESPONSIVE POLYMERS ,Photodegradable ,HYDROGELS ,NANOPOROUS THIN-FILMS ,Nanoparticle ,Nanotechnology ,Stimuli responsive ,TRIGGERED RELEASE ,Micelle ,Catalysis ,DESIGN ,Amphiphile ,Medicine and Health Sciences ,NANOPARTICLES ,Copolymer ,Organic chemistry ,Vesicles ,DRUG-DELIVERY ,vesicles ,MICELLES ,Chemistry ,stimuli responsive ,Organic Chemistry ,Self-assembly ,self-assembly ,General Chemistry ,DIBLOCK COPOLYMERS ,[CHIM.POLY]Chemical Sciences/Polymers ,polymersomes ,Self-healing hydrogels ,Drug delivery ,Polymersome ,photodegradable ,CLICK POLYMERIZATION - Abstract
© 2015 Published by NRC Research Press. The development of stimuli-responsive materials is of significant interest for many applications including drug delivery, medical imaging, sensors, and microfluidic devices. Among the available stimuli, light is particularly attractive as it can be applied with high spatial and temporal resolution. We describe here the synthesis of amphiphilic triblock copolymers composed of poly(ethylene glycol) and a hydrophobic block containing o-nitrobenzyl esters throughout the backbone using copper-catalyzed azide-alkyne cycloaddition chemistry. These materials were designed to have a high weight fraction of the hydrophobic block to favour nonmicellar aggregates. The self-assembly in water was studied using nanoprecipitation and the resulting assemblies were characterized by dynamic light scattering and transmission electron microscopy. Under optimized conditions, it was possible to prepare polymer vesicles, commonly referred to as polymersomes, with diameters of approximately 100 nm. The degradation of these materials in response to UV light was studied by spectroscopy, light scattering, and electron microscopy, demonstrating that the vesicles were broken down. These results suggest the potential of these materials for applications such as encapsulation and release.
- Published
- 2015
- Full Text
- View/download PDF
41. Synthesis, Characterization, and Biological Interaction of Glyconanoparticles with Controlled Branching
- Author
-
Walter T. Liau, Andrea M. Kasko, Sébastien Lecommandoux, Marion Brochet, Colin Bonduelle, Univ Calif Los Angeles, Dept Bioengn, University of California [Los Angeles] (UCLA), University of California-University of California, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
LIVING RADICAL POLYMERIZATION ,Polymers and Plastics ,Proton Magnetic Resonance Spectroscopy ,Bioengineering ,Branching (polymer chemistry) ,Micelle ,Biomaterials ,chemistry.chemical_compound ,BETA-CYCLODEXTRIN ,Transfer agent ,Polymethacrylic Acids ,Lectins ,Polymer chemistry ,Materials Chemistry ,Copolymer ,Reversible addition−fragmentation chain-transfer polymerization ,DRUG-DELIVERY ,Methyl acrylate ,MICELLES ,Chemistry ,RECOGNITION ,RAFT POLYMERIZATION ,Galactose ,Chain transfer ,Raft ,Molecular Weight ,BLOCK-COPOLYMERS ,DIBLOCK GLYCOPOLYMERS ,[CHIM.POLY]Chemical Sciences/Polymers ,POLYSTYRENE ,Nanoparticles ,POLYMERS - Abstract
International audience; Branched amphiphilic copolymers were synthesized through the reversible additionfragmentation chain transfer (RAFT) chain extension of a poly(methyl acrylate) macro-chain transfer agent using a protected galactose monomer and a polymerizable chain transfer agent branching unit. After galactose deprotection, the copolymers were self-assembled via nanoprecipitation. The resultant nanoparticles were analyzed for their size, shape, and biological interaction with a galactose binding lectin. Using light scattering, the nanoparticles were determined to be solid spheres. Nanoparticles containing branched glycoblocks bound significantly more lectin than those containing comparable linear blocks. By adjusting the molecular weight and branching of the copolymer, the size of the self-assembled nanoparticle and the saccharide density on its surface can be varied.
- Published
- 2015
- Full Text
- View/download PDF
42. Heme alkylation by artemisinin and trioxaquines
- Author
-
Colin Bonduelle, Anne Robert, Bernard Meunier, and Sophie Laurent
- Subjects
biology ,Stereochemistry ,Ligand ,Chemistry ,Organic Chemistry ,Alkylation ,Peroxide ,Cofactor ,Adduct ,chemistry.chemical_compound ,Covalent bond ,parasitic diseases ,medicine ,biology.protein ,Physical and Theoretical Chemistry ,Artemisinin ,Heme ,medicine.drug - Abstract
Artemisinin is an efficient antimalarial drug containing a 1,2,4-trioxane which is able to alkylate heme both in vitro and in vivo, giving rise to covalent heme-artemisinin coupling products. The low valent iron(II) protoporphyrin-IX, which is the prosthetic group of hemoglobin, induces the homolysis of the peroxide bond of artemisinin by an electron transfer. The generated alkoxy radical is quickly rearranged to a C-centered radical that efficiently alkylates the heme macrocycle at meso positions. Heme is therefore both the activating agent and the target of artemisinin. Additionally, the iron(II) heme cofactor of carboxyhemoglobin was found to react as efficiently with artemisinin as oxyhemoglobin does, providing a heme-drug covalent adduct in up to 60% yield. This result indicates that the presence of a CO ligand bound to iron does not preclude the reductive activation of the peroxide, thereby confirming the high affinity of artemisinin for iron(II) heme. On the basis of this mechanism of action, a variety of new peroxide-based antimalarials named trioxaquines® have been synthesized. Trioxaquines are made by the covalent attachment of a trioxane, having alkylating ability, to a quinoline, known to readily penetrate infected erythrocytes. Several trioxaquines are active in vitro on chloroquine resistant malaria parasite at nanomolar concentrations, and are efficient to cure infected mice by oral route at 20–50 mg/kg. Copyright © 2006 John Wiley & Sons, Ltd.
- Published
- 2006
- Full Text
- View/download PDF
43. Iminosugar-based glycopolypeptides: glycosidase inhibition with bioinspired glycoprotein analogue micellar self-assemblies
- Author
-
Philippe Compain, Teresa Mena-Barragán, Carmen Ortiz Mellet, Colin Bonduelle, Emile Etamé, Jin Huang, Andreas Heise, Sébastien Lecommandoux, Camille Decroocq, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Dublin City Univ, Sci Chem Sci, Dublin City University [Dublin] (DCU), Univ Seville, Fac Chem, Dept Organ Chem, University of Sevilla, Univ Strasbourg, Lab Synth Orgn & Mol Bioact, Laboratoire de chimie moléculaire (LCM), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
1-Deoxynojirimycin ,Glycoside Hydrolases ,GLYCOPEPTIDES ,Iminosugar ,Ligands ,Micelle ,Catalysis ,Drug Delivery Systems ,BINDING ,Materials Chemistry ,Glycoside hydrolase ,Micelles ,Glycoproteins ,CLICK CLUSTERS ,chemistry.chemical_classification ,Glycobiology ,POLYPEPTIDES ,Metals and Alloys ,Biological activity ,General Chemistry ,Biomimetic nanoparticles ,GLYCOPOLYMERS ,Combinatorial chemistry ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,MULTIVALENT ,RING-OPENING POLYMERIZATION ,GLYCOBIOLOGY ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Drug delivery ,Ceramics and Composites ,Nanoparticles ,FUNCTIONALIZATION ,LECTINS ,Peptides ,Glycoprotein - Abstract
International audience; Biomimetic nanoparticles prepared by self-assembly of iminosugar-based glycopolypeptides evidenced remarkablemultivalency properties when inhibiting alpha-mannosidase activity. This approach paves the way to obtain biologically active drug delivery systems having glycosidase inhibition potency.
- Published
- 2014
- Full Text
- View/download PDF
44. Synthesis and self-assembly of polypeptide- and lipid-glycosylated dendron hybrids into glyconanoparticles
- Author
-
John, Trant, primary, Ariane, Peyret, additional, Colin, Bonduelle, additional, Khalid, Ferji, additional, Namrata, Jain, additional, Sebastien, Lecommandoux, additional, and Elizabeth, Gillies, additional
- Published
- 2016
- Full Text
- View/download PDF
45. Synthetic Glycopolypeptides as Biomimetic Analogues of Natural Glycoproteins
- Author
-
Sébastien Lecommandoux, Colin Bonduelle, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Protein glycosylation ,Glycosylation ,Polymers and Plastics ,TOXIN INHIBITION ,FACILE SYNTHESIS ,Molecular Sequence Data ,Cellular functions ,Bioengineering ,02 engineering and technology ,SOLID-PHASE SYNTHESIS ,010402 general chemistry ,01 natural sciences ,Polymerization ,Biomaterials ,chemistry.chemical_compound ,Solid-phase synthesis ,Materials Chemistry ,Solid-Phase Synthesis Techniques ,DEFINED ARCHITECTURE ,Animals ,Humans ,Amino Acid Sequence ,Glycoproteins ,chemistry.chemical_classification ,NATIVE CHEMICAL LIGATION ,Chemistry ,Molecular Mimicry ,Glycopeptides ,EXPRESSED PROTEIN LIGATION ,021001 nanoscience & nanotechnology ,Native chemical ligation ,Combinatorial chemistry ,0104 chemical sciences ,RING-OPENING POLYMERIZATION ,BLOCK-COPOLYMERS ,[CHIM.POLY]Chemical Sciences/Polymers ,Biochemistry ,Biocatalysis ,Click chemistry ,Nanoparticles ,CLICK CHEMISTRY ,0210 nano-technology ,Glycoprotein ,ACID-N-CARBOXYANHYDRIDES - Abstract
International audience; Glycoproteins are naturally produced by protein glycosylation and are involved in a wide range of cellular functions. This Review aims to summarize the preparation of well-defined synthetic glycoproteins by using chemical routes as well as to highlight the preparation of ideal polymeric analogues of natural glycoproteins: glycopolypeptides. These macromolecules are simplified models of glycoproteins and are designed with the purpose of both mimicking the properties of natural glycoproteins as well as bringing innovative polymeric structures for materials science applications.
- Published
- 2013
- Full Text
- View/download PDF
46. ChemInform Abstract: Multicompartmentalized Polymeric Systems: Towards Biomimetic Cellular Structure and Function
- Author
-
Maïté Marguet, Colin Bonduelle, and Sébastien Lecommandoux
- Subjects
Biomimetic materials ,Metabolic function ,Chemistry ,Polymersome ,Drug delivery ,Nanotechnology ,Cell structure ,General Medicine ,Biomimetics ,Structure and function - Abstract
The cell is certainly one of the most complex and exciting systems in Nature that scientists are still trying to fully understand. Such a challenge pushes material scientists to seek to reproduce its perfection by building biomimetic materials with high-added value and previously unmatched properties. Thanks to their versatility, their robustness and the current state of polymer chemistry science, we believe polymer-based materials to constitute or represent ideal candidates when addressing the challenge of biomimicry, which defines the focus of this review. The first step consists in mimicking the structure of the cell: its inner compartments, the organelles, with a multicompartmentalized structure, and the rest, i.e. the cytoplasm minus the organelles (mainly cytoskeleton/cytosol) with gels or particular solutions (highly concentrated for example) in one compartment, and finally the combination of both. Achieving this first structural step enables us to considerably widen the gap of possibilities in drug delivery systems. Another powerful property of the cell lies in its metabolic function. The second step is therefore to achieve enzymatic reactions in a compartment, as occurs in the organelles, in a highly controlled, selective and efficient manner. We classify the most exciting polymersome nanoreactors reported in our opinion into two different subsections, depending on their very final concept or purpose of design. We also highlight in a thorough table the experimental sections crucial to such work. Finally, after achieving control over these prerequisites, scientists are able to combine them and push the frontiers of biomimicry further: from cell structure mimics towards a controlled biofunctionality. Such a biomimetic approach in material design and the future research it will stimulate, are believed to bring considerable enrichments to the fields of drug delivery, (bio)sensors, (bio)catalysis and (bio)technology.
- Published
- 2013
- Full Text
- View/download PDF
47. Bare histidine-serine models: implication and impact of hydrogen bonding on nucleophilicity
- Author
-
Rémy Fortrie, Messaoud Mazari, Gérard Buono, Frédéric Fotiadu, Yuan Zhang, Julien Leclaire, Didier Bourissou, Colin Bonduelle, Olivier Thillaye du Boullay, Innocenzo de Riggi, Blanca Martin-Vaca, Institut des Sciences Moléculaires de Marseille (ISM2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC)
- Subjects
Acylation ,Alcohol ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Catalysis ,chemistry.chemical_compound ,Nucleophile ,Serine ,Moiety ,Reactivity (chemistry) ,Histidine ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Conformational isomerism ,010405 organic chemistry ,Hydrogen bond ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Organic Chemistry ,Imidazoles ,Hydrogen Bonding ,General Chemistry ,Nuclear magnetic resonance spectroscopy ,MESH: NMR spectroscopy ,amino acids ,density functional calculations ,hydrogen bonding ,nucleophilicity ,0104 chemical sciences ,chemistry ,Intramolecular force ,Thermodynamics ,Protons - Abstract
International audience; A new family of 2-hydroxyalk(en/yn)ylimidazoles has been evaluated as serine–histidine bare dyad models for the ring-opening reaction of L-lacOCA, a cyclic O-carboxyanhydride. These models were selected to unravel the implication of intramolecular hydrogen bonding and to substantiate its influence on the nucleophilicity of the alcohol moiety, as it is suspected to occur in enzyme active sites. Although designed to exclusively facilitate the preliminary step of proton transfer during the studied ring-opening reaction, these minimalistic models depicted a measureable increase in reactivity relative to the isolated fragments. A couple of reliable experimental and theoretical methods have been developed to readily monitor the strength of the intramolecular hydrogen bond in dilute solution. Results show that the folded conformers are the most nucleophilic species because of the intramolecular hydrogen bond.
- Published
- 2013
- Full Text
- View/download PDF
48. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function
- Author
-
Colin Bonduelle, Maïté Marguet, Sébastien Lecommandoux, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Biomimetic materials ,GIANT UNILAMELLAR VESICLES ,Computer science ,Polymers ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Drug Delivery Systems ,SOL-GEL TRANSITION ,LOADED LIPOSOMES ,Biomimetic Materials ,Biomimetics ,Animals ,Humans ,CASCADE REACTIONS ,AQUEOUS COMPARTMENTS ,DRUG-DELIVERY ,Metabolic function ,COPOLYMER VESICLES ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Structure and function ,BLOCK-COPOLYMERS ,[CHIM.POLY]Chemical Sciences/Polymers ,ARTIFICIAL ORGANELLES ,Polymersome ,Drug delivery ,Cell structure ,Artificial Cells ,0210 nano-technology ,NANOREACTORS ,Artificial Organelles - Abstract
International audience; The cell is certainly one of the most complex and exciting systems in Nature that scientists are still trying to fully understand. Such a challenge pushes material scientists to seek to reproduce its perfection by building biomimetic materials with high-added value and previously unmatched properties. Thanks to their versatility, their robustness and the current state of polymer chemistry science, we believe polymer-based materials to constitute or represent ideal candidates when addressing the challenge of biomimicry, which defines the focus of this review. The first step consists in mimicking the structure of the cell: its inner compartments, the organelles, with a multicompartmentalized structure, and the rest, i.e. the cytoplasm minus the organelles (mainly cytoskeleton/ cytosol) with gels or particular solutions (highly concentrated for example) in one compartment, and finally the combination of both. Achieving this first structural step enables us to considerably widen the gap of possibilities in drug delivery systems. Another powerful property of the cell lies in its metabolic function. The second step is therefore to achieve enzymatic reactions in a compartment, as occurs in the organelles, in a highly controlled, selective and efficient manner. We classify the most exciting polymersome nanoreactors reported in our opinion into two different subsections, depending on their very final concept or purpose of design. We also highlight in a thorough table the experimental sections crucial to such work. Finally, after achieving control over these prerequisites, scientists are able to combine them and push the frontiers of biomimicry further: from cell structure mimics towards a controlled biofunctionality. Such a biomimetic approach in material design and the future research it will stimulate, are believed to bring considerable enrichments to the fields of drug delivery, (bio)sensors, (bio)catalysis and (bio)technology.
- Published
- 2013
- Full Text
- View/download PDF
49. Synthesis and self-assembly of branched glycopolypeptides: effect of topology and conformation
- Author
-
Jin Huang, Andreas Heise, Silvia Mazzaferro, Sébastien Lecommandoux, Olivier Lambert, Colin Bonduelle, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Sch Chem Sci (Dublin City Univ), Dublin City University [Dublin] (DCU), Chimie et Biologie des Membranes et des Nanoobjets (CBMN), Université de Bordeaux (UB)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Protein Conformation ,FACILE SYNTHESIS ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Micelle ,VESICLES ,Protein structure ,POLYMERSOMES ,Polymer chemistry ,Copolymer ,Physical and Theoretical Chemistry ,N-CARBOXYANHYDRIDES ,chemistry.chemical_classification ,ARCHITECTURE ,MICELLES ,POLYPEPTIDES ,Glycopeptides ,Polymer ,Oligosaccharide ,AGGREGATION ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,BLOCK-COPOLYMERS ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymersome ,Self-assembly ,Peptides ,0210 nano-technology ,Macromolecule ,ING-OPENING POLYMERIZATION - Abstract
International audience; Block copolymers combining peptide and saccharide moieties may play a significant role in future applications of polymers in biology, as they can be viewed as simplified synthetic analogues of glycosylated proteins, which display a wide range of biological functions in nature. While a small number of oligosaccharides containing synthetic polypeptides have been described so far, here we present the efficient preparation of a small library of tree-like glycopolypeptides incorporating poly(gamma-benzyl-L-glutamate) having different molecular weights. A comprehensive study of the self-assembly of these unique grafted macromolecular structures is detailed. All the copolymers presented the ability to spontaneously self-assemble into spherical micelles in water; a property assigned both to the spontaneous curvature of the grafted oligosaccharide segments and to the favorable hydrophilic to hydrophobic volume ratios. These hydrophilic to hydrophobic volume ratios were efficiently counterbalanced by the self-assembly of blends incorporating poly(gamma-benzyl-L-glutamate) homopolymers - this simple approach minimized the influence of the spontaneous curvature of the oligosaccharides' dendrons and afforded a transition to lamellar structures in solution.
- Published
- 2013
- Full Text
- View/download PDF
50. Synthesis and self-assembly of 'tree-like' amphiphilic glycopolypeptides
- Author
-
Emmanuel Ibarboure, Jin Huang, Andreas Heise, Sébastien Lecommandoux, Colin Bonduelle, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Sch Chem Sci (Dublin City Univ), Dublin City University [Dublin] (DCU), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Models, Molecular ,DOXORUBICIN ,Magnetic Resonance Spectroscopy ,Dispersity ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Micelle ,Catalysis ,VESICLES ,chemistry.chemical_compound ,Surface-Active Agents ,Microscopy, Electron, Transmission ,POLYMERSOMES ,Amphiphile ,Polymer chemistry ,Materials Chemistry ,Copolymer ,WATER ,DRUG-DELIVERY ,MICELLES ,Molecular Structure ,Metals and Alloys ,Glycopeptides ,General Chemistry ,GLYCOPOLYMERS ,021001 nanoscience & nanotechnology ,Cycloaddition ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,BLOCK-COPOLYMERS ,[CHIM.POLY]Chemical Sciences/Polymers ,Dextran ,chemistry ,Polymersome ,Ceramics and Composites ,Nanoparticles ,Self-assembly ,0210 nano-technology - Abstract
International audience; Novel synthetic tree-like oligosaccharides-grafted-polypeptides were prepared by using Huisgen 1,3-dipolar cycloaddition between poly(gamma-benzyl-L-glutamate)-block-poly(propargylglycine) and two different oligosaccharides, dextran or hyaluronan. By direct solubilisation in water, these tree- ike glycopeptides spontaneously form very small assemblies with sizes below 50 nm and low polydispersity.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.