1. MoS2 and Fe2O3 co-modify g-C3N4 to improve the performance of photocatalytic hydrogen production
- Author
-
Yan Zhang, Junfen Wan, Chunjuan Zhang, and Xuejun Cao
- Subjects
Medicine ,Science - Abstract
Abstract Photocatalytic hydrogen production as a technology to solve energy and environmental problems exhibits great prospect and the exploration of new photocatalytic materials is crucial. In this research, the ternary composite catalyst of MoS2/Fe2O3/g-C3N4 was successfully prepared by a hydrothermal method, and then a series of characterizations were conducted. The characterization results demonstrated that the composite catalyst had better photocatalytic performance and experiment results had confirmed that the MoS2/Fe2O3/g-C3N4 composite catalyst had a higher hydrogen production rate than the single-component catalyst g-C3N4, which was 7.82 mmol g−1 h−1, about 5 times higher than the catalyst g-C3N4 (1.56 mmol g−1 h−1). The improvement of its photocatalytic activity can be mainly attributed to its enhanced absorption of visible light and the increase of the specific surface area, which provided more reactive sites for the composite catalyst. The successful preparation of composite catalyst provided more channels for carrier migration and reduced the recombination of photogenerated electrons and holes. Meanwhile, the composite catalyst also showed higher stability and repeatability.
- Published
- 2022
- Full Text
- View/download PDF