39,507 results on '"Carroll, P."'
Search Results
2. The Cambridge Meeting, November 1–4, 1984
- Author
-
Thackray, Arnold, O’Connor, John E., Edmonson, James M., Kranakis, Eda, Reich, Leonard S., Sivin, Nathan, Todd, Edmund N., Victor, Stephen, Robinson, Eric, Thackray, Arnold, Friedel, Robert, Corn, Joseph J., Smith, Cecil O., Kasson, John, Hoke, Donald, Carroll, P. Thomas, Bonham, Julia C., Gieryn, Thomas F., Post, Robert C., Chandler, Alfred D., Wilde, Mark, Mack, Pamela E., and Rosen, Howard
- Published
- 2023
- Full Text
- View/download PDF
3. The hypothetical track-length fitting algorithm for energy measurement in liquid argon TPCs
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Alex, N. S., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Alzás, P. Barham, Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Choi, G., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., Gago, A. M., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hart, A. L., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Jung, K. Y., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lalău, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., Li, J. -Y, Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mukhamejanov, Y., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paixão, L. G. Porto, Potekhin, M., Potenza, R., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rahaman, U., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Razakamiandra, R. F., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Restrepo, Diego, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Tiwari, S., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Vizarreta, R., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions.
- Published
- 2024
4. A Method for Imaging the Ischemic Penumbra with MRI using IVIM
- Author
-
Liu, Mira M., Saadat, Niloufar, Roth, Steven P., Niekrasz, Marek A., Giurcanu, Mihai, Shazeeb, Mohammed Salman, Carroll, Timothy J., and Christoforidis, Gregory A.
- Subjects
Physics - Medical Physics - Abstract
This work examines the hypothesis that intravoxel incoherent motion MRI (IVIM) can quantify local cerebral blood flow (qCBF), infarct volume, and define the ischemic penumbra for determination of the perfusion-diffusion mismatch (PWI/DWI) volume in a setting of acute ischemic stroke. Eight experiments were conducted in a pre-clinical middle cerebral artery occlusion (MCAO) model. IVIM and dynamic susceptibility contrast (DSC) imaging were acquired 2.5hr post-MCAO. IVIM was post-processed using software written in-house to produce parametric images of local qCBF, Water Transport Time (WTT), diffusion, and subsequently, PWI/DWI mismatch. These IVIM image parameters were compared with delay-and-dispersion-corrected local-AIF DSC perfusion image parameters including Tmax, qCBF, mean transit time (MTT), and mean diffusivity for DSC PWI/DWI mismatch. Final infarct volume was measured 4hrs post-occlusion. Early (2.5hr post-occlusion) DSC qCBF and IVIM qCBF in the diffusion negative MCA territory correlated strongly (slope=1.00, p=0.01,R2=0.69,Lins CCC=0.71), and both DSC and IVIM qCBF values negatively correlated with final infarct volume (R2=0.78,R2=0.61 respectively). The volume of hypoperfusion measured at 2.5 hours from DSC qCBF and from IVIM qCBF both predicted final infarct volume with good sensitivity and correlation (slope=2.08, R2=0.67, slope=2.50,R2=0.68 respectively). IVIM PWI/DWI ratio was correlated with infarct growth (R2=0.70) and WTT correlated with MTT (slope=0.82,R2=0.60). IVIM qCBF correlated strongly with local-AIF DSC qCBF and IVIM PWI/DWI correlated strongly with infarct growth. Both DSC and IVIM quantitative perfusion image acquired early after occlusion were able to predict final infarct volume, and IVIM simultaneous PWI/DWI ratio predicted infarct growth., Comment: 16 pages, 5 figures, Appendix
- Published
- 2024
5. Project Sid: Many-agent simulations toward AI civilization
- Author
-
AL, Altera., Ahn, Andrew, Becker, Nic, Carroll, Stephanie, Christie, Nico, Cortes, Manuel, Demirci, Arda, Du, Melissa, Li, Frankie, Luo, Shuying, Wang, Peter Y, Willows, Mathew, Yang, Feitong, and Yang, Guangyu Robert
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Multiagent Systems - Abstract
AI agents have been evaluated in isolation or within small groups, where interactions remain limited in scope and complexity. Large-scale simulations involving many autonomous agents -- reflecting the full spectrum of civilizational processes -- have yet to be explored. Here, we demonstrate how 10 - 1000+ AI agents behave and progress within agent societies. We first introduce the PIANO (Parallel Information Aggregation via Neural Orchestration) architecture, which enables agents to interact with humans and other agents in real-time while maintaining coherence across multiple output streams. We then evaluate agent performance in agent simulations using civilizational benchmarks inspired by human history. These simulations, set within a Minecraft environment, reveal that agents are capable of meaningful progress -- autonomously developing specialized roles, adhering to and changing collective rules, and engaging in cultural and religious transmission. These preliminary results show that agents can achieve significant milestones towards AI civilizations, opening new avenues for large simulations, agentic organizational intelligence, and integrating AI into human civilizations., Comment: 35 pages, 14 figures
- Published
- 2024
6. GPT-4o System Card
- Author
-
OpenAI, Hurst, Aaron, Lerer, Adam, Goucher, Adam P., Perelman, Adam, Ramesh, Aditya, Clark, Aidan, Ostrow, AJ, Welihinda, Akila, Hayes, Alan, Radford, Alec, Mądry, Aleksander, Baker-Whitcomb, Alex, Beutel, Alex, Borzunov, Alex, Carney, Alex, Chow, Alex, Kirillov, Alex, Nichol, Alex, Paino, Alex, Renzin, Alex, Passos, Alex Tachard, Kirillov, Alexander, Christakis, Alexi, Conneau, Alexis, Kamali, Ali, Jabri, Allan, Moyer, Allison, Tam, Allison, Crookes, Amadou, Tootoochian, Amin, Tootoonchian, Amin, Kumar, Ananya, Vallone, Andrea, Karpathy, Andrej, Braunstein, Andrew, Cann, Andrew, Codispoti, Andrew, Galu, Andrew, Kondrich, Andrew, Tulloch, Andrew, Mishchenko, Andrey, Baek, Angela, Jiang, Angela, Pelisse, Antoine, Woodford, Antonia, Gosalia, Anuj, Dhar, Arka, Pantuliano, Ashley, Nayak, Avi, Oliver, Avital, Zoph, Barret, Ghorbani, Behrooz, Leimberger, Ben, Rossen, Ben, Sokolowsky, Ben, Wang, Ben, Zweig, Benjamin, Hoover, Beth, Samic, Blake, McGrew, Bob, Spero, Bobby, Giertler, Bogo, Cheng, Bowen, Lightcap, Brad, Walkin, Brandon, Quinn, Brendan, Guarraci, Brian, Hsu, Brian, Kellogg, Bright, Eastman, Brydon, Lugaresi, Camillo, Wainwright, Carroll, Bassin, Cary, Hudson, Cary, Chu, Casey, Nelson, Chad, Li, Chak, Shern, Chan Jun, Conger, Channing, Barette, Charlotte, Voss, Chelsea, Ding, Chen, Lu, Cheng, Zhang, Chong, Beaumont, Chris, Hallacy, Chris, Koch, Chris, Gibson, Christian, Kim, Christina, Choi, Christine, McLeavey, Christine, Hesse, Christopher, Fischer, Claudia, Winter, Clemens, Czarnecki, Coley, Jarvis, Colin, Wei, Colin, Koumouzelis, Constantin, Sherburn, Dane, Kappler, Daniel, Levin, Daniel, Levy, Daniel, Carr, David, Farhi, David, Mely, David, Robinson, David, Sasaki, David, Jin, Denny, Valladares, Dev, Tsipras, Dimitris, Li, Doug, Nguyen, Duc Phong, Findlay, Duncan, Oiwoh, Edede, Wong, Edmund, Asdar, Ehsan, Proehl, Elizabeth, Yang, Elizabeth, Antonow, Eric, Kramer, Eric, Peterson, Eric, Sigler, Eric, Wallace, Eric, Brevdo, Eugene, Mays, Evan, Khorasani, Farzad, Such, Felipe Petroski, Raso, Filippo, Zhang, Francis, von Lohmann, Fred, Sulit, Freddie, Goh, Gabriel, Oden, Gene, Salmon, Geoff, Starace, Giulio, Brockman, Greg, Salman, Hadi, Bao, Haiming, Hu, Haitang, Wong, Hannah, Wang, Haoyu, Schmidt, Heather, Whitney, Heather, Jun, Heewoo, Kirchner, Hendrik, Pinto, Henrique Ponde de Oliveira, Ren, Hongyu, Chang, Huiwen, Chung, Hyung Won, Kivlichan, Ian, O'Connell, Ian, Osband, Ian, Silber, Ian, Sohl, Ian, Okuyucu, Ibrahim, Lan, Ikai, Kostrikov, Ilya, Sutskever, Ilya, Kanitscheider, Ingmar, Gulrajani, Ishaan, Coxon, Jacob, Menick, Jacob, Pachocki, Jakub, Aung, James, Betker, James, Crooks, James, Lennon, James, Kiros, Jamie, Leike, Jan, Park, Jane, Kwon, Jason, Phang, Jason, Teplitz, Jason, Wei, Jason, Wolfe, Jason, Chen, Jay, Harris, Jeff, Varavva, Jenia, Lee, Jessica Gan, Shieh, Jessica, Lin, Ji, Yu, Jiahui, Weng, Jiayi, Tang, Jie, Yu, Jieqi, Jang, Joanne, Candela, Joaquin Quinonero, Beutler, Joe, Landers, Joe, Parish, Joel, Heidecke, Johannes, Schulman, John, Lachman, Jonathan, McKay, Jonathan, Uesato, Jonathan, Ward, Jonathan, Kim, Jong Wook, Huizinga, Joost, Sitkin, Jordan, Kraaijeveld, Jos, Gross, Josh, Kaplan, Josh, Snyder, Josh, Achiam, Joshua, Jiao, Joy, Lee, Joyce, Zhuang, Juntang, Harriman, Justyn, Fricke, Kai, Hayashi, Kai, Singhal, Karan, Shi, Katy, Karthik, Kavin, Wood, Kayla, Rimbach, Kendra, Hsu, Kenny, Nguyen, Kenny, Gu-Lemberg, Keren, Button, Kevin, Liu, Kevin, Howe, Kiel, Muthukumar, Krithika, Luther, Kyle, Ahmad, Lama, Kai, Larry, Itow, Lauren, Workman, Lauren, Pathak, Leher, Chen, Leo, Jing, Li, Guy, Lia, Fedus, Liam, Zhou, Liang, Mamitsuka, Lien, Weng, Lilian, McCallum, Lindsay, Held, Lindsey, Ouyang, Long, Feuvrier, Louis, Zhang, Lu, Kondraciuk, Lukas, Kaiser, Lukasz, Hewitt, Luke, Metz, Luke, Doshi, Lyric, Aflak, Mada, Simens, Maddie, Boyd, Madelaine, Thompson, Madeleine, Dukhan, Marat, Chen, Mark, Gray, Mark, Hudnall, Mark, Zhang, Marvin, Aljubeh, Marwan, Litwin, Mateusz, Zeng, Matthew, Johnson, Max, Shetty, Maya, Gupta, Mayank, Shah, Meghan, Yatbaz, Mehmet, Yang, Meng Jia, Zhong, Mengchao, Glaese, Mia, Chen, Mianna, Janner, Michael, Lampe, Michael, Petrov, Michael, Wu, Michael, Wang, Michele, Fradin, Michelle, Pokrass, Michelle, Castro, Miguel, de Castro, Miguel Oom Temudo, Pavlov, Mikhail, Brundage, Miles, Wang, Miles, Khan, Minal, Murati, Mira, Bavarian, Mo, Lin, Molly, Yesildal, Murat, Soto, Nacho, Gimelshein, Natalia, Cone, Natalie, Staudacher, Natalie, Summers, Natalie, LaFontaine, Natan, Chowdhury, Neil, Ryder, Nick, Stathas, Nick, Turley, Nick, Tezak, Nik, Felix, Niko, Kudige, Nithanth, Keskar, Nitish, Deutsch, Noah, Bundick, Noel, Puckett, Nora, Nachum, Ofir, Okelola, Ola, Boiko, Oleg, Murk, Oleg, Jaffe, Oliver, Watkins, Olivia, Godement, Olivier, Campbell-Moore, Owen, Chao, Patrick, McMillan, Paul, Belov, Pavel, Su, Peng, Bak, Peter, Bakkum, Peter, Deng, Peter, Dolan, Peter, Hoeschele, Peter, Welinder, Peter, Tillet, Phil, Pronin, Philip, Tillet, Philippe, Dhariwal, Prafulla, Yuan, Qiming, Dias, Rachel, Lim, Rachel, Arora, Rahul, Troll, Rajan, Lin, Randall, Lopes, Rapha Gontijo, Puri, Raul, Miyara, Reah, Leike, Reimar, Gaubert, Renaud, Zamani, Reza, Wang, Ricky, Donnelly, Rob, Honsby, Rob, Smith, Rocky, Sahai, Rohan, Ramchandani, Rohit, Huet, Romain, Carmichael, Rory, Zellers, Rowan, Chen, Roy, Chen, Ruby, Nigmatullin, Ruslan, Cheu, Ryan, Jain, Saachi, Altman, Sam, Schoenholz, Sam, Toizer, Sam, Miserendino, Samuel, Agarwal, Sandhini, Culver, Sara, Ethersmith, Scott, Gray, Scott, Grove, Sean, Metzger, Sean, Hermani, Shamez, Jain, Shantanu, Zhao, Shengjia, Wu, Sherwin, Jomoto, Shino, Wu, Shirong, Shuaiqi, Xia, Phene, Sonia, Papay, Spencer, Narayanan, Srinivas, Coffey, Steve, Lee, Steve, Hall, Stewart, Balaji, Suchir, Broda, Tal, Stramer, Tal, Xu, Tao, Gogineni, Tarun, Christianson, Taya, Sanders, Ted, Patwardhan, Tejal, Cunninghman, Thomas, Degry, Thomas, Dimson, Thomas, Raoux, Thomas, Shadwell, Thomas, Zheng, Tianhao, Underwood, Todd, Markov, Todor, Sherbakov, Toki, Rubin, Tom, Stasi, Tom, Kaftan, Tomer, Heywood, Tristan, Peterson, Troy, Walters, Tyce, Eloundou, Tyna, Qi, Valerie, Moeller, Veit, Monaco, Vinnie, Kuo, Vishal, Fomenko, Vlad, Chang, Wayne, Zheng, Weiyi, Zhou, Wenda, Manassra, Wesam, Sheu, Will, Zaremba, Wojciech, Patil, Yash, Qian, Yilei, Kim, Yongjik, Cheng, Youlong, Zhang, Yu, He, Yuchen, Zhang, Yuchen, Jin, Yujia, Dai, Yunxing, and Malkov, Yury
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Computers and Society ,Computer Science - Machine Learning ,Computer Science - Sound ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.
- Published
- 2024
7. What Emergence Can Possibly Mean
- Author
-
Carroll, Sean M. and Parola, Achyuth
- Subjects
Physics - History and Philosophy of Physics ,Condensed Matter - Statistical Mechanics - Abstract
We consider emergence from the perspective of dynamics: states of a system evolving with time. We focus on the role of a decomposition of wholes into parts, and attempt to characterize relationships between levels without reference to whether higher-level properties are "novel" or "unexpected." We offer a classification of different varieties of emergence, with and without new ontological elements at higher levels., Comment: Submitted to a volume on Real Patterns (Tyler Milhouse, ed.), to be published by MIT Press
- Published
- 2024
8. Towards Designing Scalable Quantum-Enhanced Generative Networks for Neutrino Physics Experiments with Liquid Argon Time Projection Chambers
- Author
-
Delgado, Andrea, Venegas-Vargas, Diego, Huynh, Adam, and Carroll, Kevon
- Subjects
Quantum Physics ,High Energy Physics - Experiment - Abstract
Generative modeling for high-resolution images in Liquid Argon Time Projection Chambers (LArTPC), used in neutrino physics experiments, presents significant challenges due to the complexity and sparsity of the data. This work explores the application of quantum-enhanced generative networks to address these challenges, focusing on the scaling of models to handle larger image sizes and avoid the often encountered problem of mode collapse. To counteract mode collapse, regularization methods were introduced and proved to be successful on small-scale images, demonstrating improvements in stabilizing the training process. Although mode collapse persisted in higher-resolution settings, the introduction of these techniques significantly enhanced the model's performance in lower-dimensional cases, providing a strong foundation for further exploration. These findings highlight the potential for quantum-enhanced generative models in LArTPC data generation and offer valuable insights for the future development of scalable hybrid quantum-classical solutions in nuclear and high-energy physics., Comment: 10 pages, 8 figures
- Published
- 2024
9. Measurement of the double-differential cross section of muon-neutrino charged-current interactions with low hadronic energy in the NOvA Near Detector
- Author
-
Acero, M. A., Acharya, B., Adamson, P., Aliaga, L., Anfimov, N., Antoshkin, A., Arrieta-Diaz, E., Asquith, L., Aurisano, A., Back, A., Balashov, N., Baldi, P., Bambah, B. A., Bannister, E., Barros, A., Bashar, S., Bat, A., Bays, K., Bernstein, R., Bezerra, T. J. C., Bhatnagar, V., Bhattarai, D., Bhuyan, B., Bian, J., Booth, A. C., Bowles, R., Brahma, B., Bromberg, C., Buchanan, N., Butkevich, A., Calvez, S., Carroll, T. J., Catano-Mur, E., Cesar, J. P., Chatla, A., Chirco, R., Choudhary, B. C., Christensen, A., Cicala, M. F., Coan, T. E., Cooleybeck, A., Cortes-Parra, C., Coveyou, D., Cremonesi, L., Davies, G. S., Derwent, P. F., Ding, P., Djurcic, Z., Dobbs, K., Dolce, M., Doyle, D., Tonguino, D. Dueñas, Dukes, E. C., Dye, A., Ehrlich, R., Ewart, E., Filip, P., Frank, M. J., Gallagher, H. R., Gao, F., Giri, A., Gomes, R. A., Goodman, M. C., Groh, M., Group, R., Habig, A., Hakl, F., Hartnell, J., Hatcher, R., He, M., Heller, K., Hewes, V, Himmel, A., Horoho, T., Ivaneev, Y., Ivanova, A., Jargowsky, B., Jarosz, J., Johnson, C., Judah, M., Kakorin, I., Kaplan, D. M., Kalitkina, A., Kirezli-Ozdemir, B., Kleykamp, J., Klimov, O., Koerner, L. W., Kolupaeva, L., Kralik, R., Kumar, A., Kus, V., Lackey, T., Lang, K., Lesmeister, J., Lister, A., Liu, J., Lock, J. A., Lokajicek, M., MacMahon, M., Magill, S., Mann, W. A., Manoharan, M. T., Plata, M. Manrique, Marshak, M. L., Martinez-Casales, M., Matveev, V., Mehta, B., Messier, M. D., Meyer, H., Miao, T., Miller, W. H., Mishra, S., Mishra, S. R., Mislivec, A., Mohanta, R., Moren, A., Morozova, A., Mu, W., Mualem, L., Muether, M., Mulder, K., Myers, D., Naples, D., Nath, A., Nelleri, S., Nelson, J. K., Nichol, R., Niner, E., Norman, A., Norrick, A., Nosek, T., Oh, H., Olshevskiy, A., Olson, T., Ozkaynak, M., Pal, A., Paley, J., Panda, L., Patterson, R. B., Pawloski, G., Petti, R., Porter, J. C. C., Prais, L. R., Rabelhofer, M., Rafique, A., Raj, V., Rajaoalisoa, M., Ramson, B., Rebel, B., Roy, P., Samoylov, O., Sanchez, M. C., Falero, S. Sanchez, Shanahan, P., Sharma, P., Sheshukov, A., Shivam, Shmakov, A., Shorrock, W., Shukla, S., Singha, D. K., Singh, I., Singh, P., Singh, V., Smith, E., Smolik, J., Snopok, P., Solomey, N., Sousa, A., Soustruznik, K., Strait, M., Suter, L., Sutton, A., Sutton, K., Swain, S., Sweeney, C., Sztuc, A., Oregui, B. Tapia, Tas, P., Thakore, T., Thomas, J., Tiras, E., Torun, Y., Tran, D., Trokan-Tenorio, J., Urheim, J., Vahle, P., Vallari, Z., Villamil, J. D., Vockerodt, K. J., Wallbank, M., Wetstein, M., Whittington, D., Wickremasinghe, D. A., Wieber, T., Wolcott, J., Wrobel, M., Wu, S., Wu, W., Xiao, Y., Yaeggy, B., Yahaya, A., Yankelevich, A., Yonehara, K., Yu, Y., Zadorozhnyy, S., Zalesak, J., and Zwaska, R.
- Subjects
High Energy Physics - Experiment - Abstract
The NOvA collaboration reports cross-section measurements for $\nu_{\mu}$ charged-current interactions with low hadronic energy (maximum kinetic energy of 250 MeV for protons and 175 MeV for pions) in the NOvA Near Detector. The results are presented as a double-differential cross section as a function of the direct observables of the final-state muon kinematics. Results are also presented as a single-differential cross section as a function of the derived square of the four-momentum transfer, $Q^{2}$, and as a function of the derived neutrino energy. The data correspond to an accumulated 8.09$\times10^{20}$ protons-on-target (POT) in the neutrino mode of the NuMI beam, with a narrow band of neutrino energies peaked at 1.8 GeV. The analysis provides a sample of neutrino-nucleus interactions with an enhanced fraction of quasi-elastic and two-particle-two-hole (2p2h) interactions. This enhancement allows quantitative comparisons with various nuclear models. We find strong disagreement between data and theory-based models in various regions of the muon kinematic phase space, especially in the forward muon direction., Comment: 20 pages, 12 figures
- Published
- 2024
10. Measurement of d2sigma/d|q|dEavail in charged current neutrino-nucleus interactions at <Ev> = 1.86 GeV using the NOvA Near Detector
- Author
-
Acero, M. A., Acharya, B., Adamson, P., Aliaga, L., Anfimov, N., Antoshkin, A., Arrieta-Diaz, E., Asquith, L., Aurisano, A., Back, A., Balashov, N., Baldi, P., Bambah, B. A., Bannister, E., Barros, A., Bashar, S., Bat, A., Bays, K., Bernstein, R., Bezerra, T. J. C., Bhatnagar, V., Bhattarai, D., Bhuyan, B., Bian, J., Booth, A. C., Bowles, R., Brahma, B., Bromberg, C., Buchanan, N., Butkevich, A., Calvez, S., Carroll, T. J., Catano-Mur, E., Cesar, J. P., Chatla, A., Chirco, R., Choudhary, B. C., Christensen, A., Cicala, M. F., Coan, T. E., Cooleybeck, A., Cortes-Parra, C., Coveyou, D., Cremonesi, L., Davies, G. S., Derwent, P. F., Ding, P., Djurcic, Z., Dobbs, K., Dolce, M., Doyle, D., Tonguino, D. Duenas, Dukes, E. C., Dye, A., Ehrlich, R., Ewart, E., Filip, P., Frank, M. J., Gallagher, H. R., Gao, F., Giri, A., Gomes, R. A., Goodman, M. C., Groh, M., Group, R., Habig, A., Hakl, F., Hartnell, J., Hatcher, R., He, M., Heller, K., Hewes, V, Himmel, A., Horoho, T., Ivaneev, Y., Ivanova, A., Jargowsky, B., Jarosz, J., Johnson, C., Judah, M., Kakorin, I., Kaplan, D. M., Kalitkina, A., Kirezli-Ozdemir, B., Kleykamp, J., Klimov, O., Koerner, L. W., Kolupaeva, L., Kralik, R., Kumar, A., Kuruppu, C. D., Kus, V., Lackey, T., Lang, K., Lesmeister, J., Lister, A., Liu, J., Lock, J. A., Lokajicek, M., MacMahon, M., Magill, S., Mann, W. A., Manoharan, M. T., Plata, M. Manrique, Marshak, M. L., Martinez-Casales, M., Matveev, V., Mehta, B., Messier, M. D., Meyer, H., Miao, T., Miller, W. H., Mishra, S., Mishra, S. R., Mohanta, R., Moren, A., Morozova, A., Mu, W., Mualem, L., Muether, M., Mulder, K., Myers, D., Naples, D., Nath, A., Nelleri, S., Nelson, J. K., Nichol, R., Niner, E., Norman, A., Norrick, A., Nosek, T., Oh, H., Olshevskiy, A., Olson, T., Ozkaynak, M., Pal, A., Paley, J., Panda, L., Patterson, R. B., Pawloski, G., Petti, R., Plunkett, R. K., Prais, L. R., Rabelhofer, M., Rafique, A., Raj, V., Rajaoalisoa, M., Ramson, B., Rebel, B., Roy, P., Samoylov, O., Sanchez, M. C., Falero, S. Sanchez, Shanahan, P., Sharma, P., Sheshukov, A., Shivam, Shmakov, A., Shorrock, W., Shukla, S., Singha, D. K., Singh, I., Singh, P., Singh, V., Smith, E., Smolik, J., Snopok, P., Solomey, N., Sousa, A., Soustruznik, K., Strait, M., Suter, L., Sutton, A., Sutton, K., Swain, S., Sweeney, C., Sztuc, A., Oregui, B. Tapia, Tas, P., Thakore, T., Thomas, J., Tiras, E., Torun, Y., Tran, D., Trokan-Tenorio, J., Urheim, J., Vahle, P., Vallari, Z., Villamil, J. D., Vockerodt, K. J., Wallbank, M., Wetstein, M., Whittington, D., Wickremasinghe, D. A., Wieber, T., Wolcott, J., Wrobel, M., Wu, S., Wu, W., Xiao, Y., Yaeggy, B., Yahaya, A., Yankelevich, A., Yonehara, K., Yu, Y., Zadorozhnyy, S., Zalesak, J., and Zwaska, R.
- Subjects
High Energy Physics - Experiment - Abstract
Double- and single-differential cross sections for inclusive charged-current neutrino-nucleus scattering are reported for the kinematic domain 0 to 2 GeV/c in three-momentum transfer and 0 to 2 GeV in available energy, at a mean muon-neutrino energy of 1.86 GeV. The measurements are based on an estimated 995,760 muon-neutrino CC interactions in the scintillator medium of the NOvA Near Detector. The subdomain populated by 2-particle-2-hole reactions is identified by the cross-section excess relative to predictions for neutrino-nucleus scattering that are constrained by a data control sample. Models for 2-particle-2- hole processes are rated by chi-square comparisons of the predicted-versus-measured muon-neutrino CC inclusive cross section over the full phase space and in the restricted subdomain. Shortfalls are observed in neutrino generator predictions obtained using the theory-based Val`encia and SuSAv2 2p2h models., Comment: 20 pages, 14 figures
- Published
- 2024
11. Enhancing the Travel Experience for People with Visual Impairments through Multimodal Interaction: NaviGPT, A Real-Time AI-Driven Mobile Navigation System
- Author
-
Zhang, He, Falletta, Nicholas J., Xie, Jingyi, Yu, Rui, Lee, Sooyeon, Billah, Syed Masum, and Carroll, John M.
- Subjects
Computer Science - Human-Computer Interaction - Abstract
Assistive technologies for people with visual impairments (PVI) have made significant advancements, particularly with the integration of artificial intelligence (AI) and real-time sensor technologies. However, current solutions often require PVI to switch between multiple apps and tools for tasks like image recognition, navigation, and obstacle detection, which can hinder a seamless and efficient user experience. In this paper, we present NaviGPT, a high-fidelity prototype that integrates LiDAR-based obstacle detection, vibration feedback, and large language model (LLM) responses to provide a comprehensive and real-time navigation aid for PVI. Unlike existing applications such as Be My AI and Seeing AI, NaviGPT combines image recognition and contextual navigation guidance into a single system, offering continuous feedback on the user's surroundings without the need for app-switching. Meanwhile, NaviGPT compensates for the response delays of LLM by using location and sensor data, aiming to provide practical and efficient navigation support for PVI in dynamic environments., Comment: 7 pages, 3 figures, this work has been accepted by the 2025 ACM International Conference on Supporting Group Work (GROUP '25)
- Published
- 2024
12. Quantum correlations, mixed states and bistability at the onset of lasing
- Author
-
Papoff, Francesco, Carroll, Mark Anthony, Lippi, Gian Luca, Oppo, Gian-Luca, and D'Alessandro, Giampaolo
- Subjects
Quantum Physics ,Physics - Optics - Abstract
We derive a model for a single mode laser that includes all two particle quantum correlations between photons and electrons. In contrast to the predictions of semi-classical models, we find that lasing takes place in the presence of quantum bistability between a non-lasing and a non-classical coherent state. The coherent state is characterized by a central frequency and a finite linewidth and emerges with finite amplitude from a saddle-node bifurcation together with an unstable coherent state. Hence coherent emission in nanolasers originates through a mixing of lasing and non-lasing states. In the limit of a macrolaser with a large number of emitters and non-resonant modes, the laser threshold approaches the prediction of the semi-classical theory, but with the important difference that lasing can be achieved only in the presence of finite size perturbations., Comment: 6 pages, 4 figures
- Published
- 2024
13. Patterns of Medical Care Cost by Service Type Associated with Lung Cancer Screening
- Author
-
Wain, Kris, Maiyani, Mahesh, Carroll, Nikki M., Meza, Rafael, Greenlee, Robert T., Neslund-Dudas, Christine, Odelberg, Michelle R., Oshiro, Caryn, and Ritzwoller, Debra P.
- Subjects
Economics - General Economics - Abstract
Introduction: Lung cancer screening (LCS) increases early-stage cancer detection which may reduce cancer treatment costs. Little is known about how receipt of LCS affects healthcare costs in real-world clinical settings. Methods: This retrospective study analyzed utilization and cost data from the Population-based Research to Optimize the Screening Process Lung Consortium. We included individuals who met age and smoking LCS eligibility criteria and were engaged within four healthcare systems between February 5, 2015, and December 31, 2021. Generalized linear models estimated healthcare costs from the payer perspective during 12-months prior and 12-months post baseline LCS. We compared these costs to eligible individuals who did not receive LCS. Sensitivity analyses expanded our sample to age-eligible individuals with any smoking history noted in the electronic health record. Secondary analyses examined costs among a sample diagnosed with lung cancer. We reported mean predicted costs with average values for all other explanatory variables. Results: We identified 10,049 eligible individuals who received baseline LCS and 15,233 who did not receive baseline LCS. Receipt of baseline LCS was associated with additional costs of $3,698 compared to individuals not receiving LCS. Secondary analyses showed suggestive evidence that LCS prior to cancer diagnosis decreased healthcare costs compared to cancer diagnosed without screening. Conclusion: These findings suggest LCS increases healthcare costs in the year following screening. However, LCS also improves early-stage cancer detection and may reduce treatment costs following diagnosis. These results can inform future simulation models to guide LCS recommendations, and aid health policy decision makers on resource allocation., Comment: 15 pages, 7 figures, 5 tables
- Published
- 2024
14. Statistics for Differential Topological Properties between Data Sets with an Application to Reservoir Computers
- Author
-
Pecora, Louis and Carroll, Thomas
- Subjects
Nonlinear Sciences - Chaotic Dynamics ,Mathematical Physics ,Physics - Data Analysis, Statistics and Probability - Abstract
It is common for researchers to record long, multiple time series from experiments or calculations. But sometimes there are no good models for the systems or no applicable mathematical theorems that can tell us when there are basic relationships between subsets of the time series data such as continuity, differentiability, embeddings, etc. The data is often higher dimensional and simple plotting will not guide us. At that point fitting the data to polynomials, Fourier series, etc. becomes uncertain. Even at the simplest level, having data that shows there is a function between the data subsets is useful and a negative answer means that more particular data fitting or analysis will be suspect and probably fail. We show here statistics that test time series subsets for basic mathematical properties and relations between them that not only indicate when more specific analyses are safe to do, but whether the systems are operating correctly. We apply these statistics to examples from reservoir computing where an important property of reservoir computers is that the reservoir system establishes an embedding of the drive system in order to make any other calculations with the reservoir computer successful., Comment: 15 pages, 10 figures
- Published
- 2024
15. AI Governance in Higher Education: Case Studies of Guidance at Big Ten Universities
- Author
-
Wu, Chuhao, Zhang, He, and Carroll, John M.
- Subjects
Computer Science - Human-Computer Interaction ,Computer Science - Artificial Intelligence - Abstract
Generative AI has drawn significant attention from stakeholders in higher education. As it introduces new opportunities for personalized learning and tutoring support, it simultaneously poses challenges to academic integrity and leads to ethical issues. Consequently, governing responsible AI usage within higher education institutions (HEIs) becomes increasingly important. Leading universities have already published guidelines on Generative AI, with most attempting to embrace this technology responsibly. This study provides a new perspective by focusing on strategies for responsible AI governance as demonstrated in these guidelines. Through a case study of 14 prestigious universities in the United States, we identified the multi-unit governance of AI, the role-specific governance of AI, and the academic characteristics of AI governance from their AI guidelines. The strengths and potential limitations of these strategies and characteristics are discussed. The findings offer practical implications for guiding responsible AI usage in HEIs and beyond.
- Published
- 2024
16. AgGym: An agricultural biotic stress simulation environment for ultra-precision management planning
- Author
-
Khosravi, Mahsa, Carroll, Matthew, Tan, Kai Liang, Van der Laan, Liza, Raigne, Joscif, Mueller, Daren S., Singh, Arti, Balu, Aditya, Ganapathysubramanian, Baskar, Singh, Asheesh Kumar, and Sarkar, Soumik
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Agricultural production requires careful management of inputs such as fungicides, insecticides, and herbicides to ensure a successful crop that is high-yielding, profitable, and of superior seed quality. Current state-of-the-art field crop management relies on coarse-scale crop management strategies, where entire fields are sprayed with pest and disease-controlling chemicals, leading to increased cost and sub-optimal soil and crop management. To overcome these challenges and optimize crop production, we utilize machine learning tools within a virtual field environment to generate localized management plans for farmers to manage biotic threats while maximizing profits. Specifically, we present AgGym, a modular, crop and stress agnostic simulation framework to model the spread of biotic stresses in a field and estimate yield losses with and without chemical treatments. Our validation with real data shows that AgGym can be customized with limited data to simulate yield outcomes under various biotic stress conditions. We further demonstrate that deep reinforcement learning (RL) policies can be trained using AgGym for designing ultra-precise biotic stress mitigation strategies with potential to increase yield recovery with less chemicals and lower cost. Our proposed framework enables personalized decision support that can transform biotic stress management from being schedule based and reactive to opportunistic and prescriptive. We also release the AgGym software implementation as a community resource and invite experts to contribute to this open-sourced publicly available modular environment framework. The source code can be accessed at: https://github.com/SCSLabISU/AgGym.
- Published
- 2024
17. DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D. M., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Barham~Alzás, P., Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cortez, A. F. V., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Fernández-Posada, D., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., M~Gago, A., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hart, A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Hernández-García, J., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kuźniak, M., Kvasnicka, J., Labree, T., Lackey, T., Lalău, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., -Y~Li, J., Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Gann, G. D. Orebi, Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paix{ã}o, L. G. Porto, Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Diego~Restrepo, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ruiz, G., Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Seo, S. H., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos.
- Published
- 2024
18. First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Barham~Alzás, P., Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., M~Gago, A., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lal{ă}u, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., -Y~Li, J., Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paix{ã}o, L. G. Porto, Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Diego~Restrepo, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting.
- Published
- 2024
19. Supernova Pointing Capabilities of DUNE
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Aimard, B., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andrade, D. A., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barenboim, G., Alzás, P. Barham, Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bracinik, J., Braga, D., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calin, M., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., Gago, A. M, Galizzi, F., Gallagher, H., Gallas, A., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerard, E., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Henry, S., Morquecho, M. A. Hernandez, Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Hostert, M., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Fernández, D. José, Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kumar, J., Kumar, P., Kumaran, S., Kunze, P., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Lawrence, A., Laycock, P., Lazanu, I., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Lee, C., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., Li, J. -Y, Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Ling, J., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., Maalmi, J., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marsden, D., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., Mazzacane, A., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, J., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Miccoli, A., Michna, G., Mikola, V., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Mote, M., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Nath, A., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papadimitriou, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pinchault, J., Pitts, K., Plows, K., Plunkett, R., Pollack, C., Pollman, T., Polo-Toledo, D., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reggiani-Guzzo, M., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Restrepo, Diego, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Roeth, A. J., Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Saa-Hernandez, A., Saakyan, R., Sacerdoti, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Soleti, S. R., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thiebault, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Vizcaya-Hernandez, A., Vrba, T., Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Wenzel, H., Westerdale, S., Wetstein, M., Whalen, K., Whilhelmi, J., White, A., Whitehead, L. H., Whittington, D., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
High Energy Physics - Experiment ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Solar and Stellar Astrophysics ,Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage., Comment: 25 pages, 16 figures
- Published
- 2024
20. Feasibility of Mindfulness at Work: A Continuing Education Program for Occupational Therapy Practitioners Experiencing Burnout
- Author
-
Susan M. Persia and Amy P. Carroll
- Abstract
Healthcare professionals, including occupational therapy practitioners, are experiencing epidemic levels of burnout. Professional organizations have prioritized research and programming to address burnout. This study evaluated the feasibility of an evidence-based virtual mindfulness continuing education program, Mindfulness at Work, and the mindfulness strategies participants learned and embedded into their workday. This program was developed and facilitated by an occupational therapist who is also a registered advanced yoga teacher. A total of 11 occupational therapy practitioners experiencing burnout met with the facilitator for once-weekly synchronous sessions over three weeks. OT practitioners were taught mindfulness strategies to use throughout their workday. Participants practiced the strategies at work between sessions and discussed their experiences during subsequent sessions. Aspects of the feasibility of both the program and the mindfulness strategies were measured post-only. Participant burnout was measured pre and post. Participants rated the virtual mindfulness continuing education program and mindfulness strategies as acceptable, appropriate, and feasible. There were significant decreases in pre- and post-test burnout scores during this preliminary evaluation. Attendance and retention rates were high. Eligibility criteria challenged recruitment capability.
- Published
- 2024
21. Exploring the Use and Impact of Online Digital Resources in a Mathematics Module
- Author
-
Violeta Morari, Catherine Palmer, Clodagh Carroll, Declan Manning, and Shane O’Rourke
- Abstract
This study examines the relationship between student engagement with digital resources and final module grade in a particular mathematics module delivered online in an Irish technological university. Measures of student engagement with the module are defined and calculated using data from virtual learning environment. These measures are analyzed to provide a description of students' online study habits. We make an initial distinction between resources provided by the lecturer that are "lecture-based" or "exam-focused." We further categorize student engagement with these resources as "active" or "passive" and consider these measures of student engagement in an online context. With these categories and measures in mind, we then examine the correlation between student engagement and final module grade using a multivariable linear regression model.
- Published
- 2024
22. Fostering Interaction and Engagement in Remotely Delivered Mathematics Tutorials in an Irish University
- Author
-
Clodagh Carroll
- Abstract
With the initial COVID-19 lockdown of March 2020 in Ireland, many modules in university programmes that were designed to be delivered face-to-face were suddenly switched to remote delivery. The difficulty for both lecturers and students in replicating face-to-face interaction and the frequent lack of lecturers' visibility of students' work in such a setting created challenges for teachers and learners alike. In the current study, students' perspectives were sought on the format of remotely delivered tutorials for two first-year engineering mathematics modules. The format of the tutorials was designed to emulate face-to-face delivery as closely as possible and to promote student engagement, with an emphasis on real-time lecturer-student interaction as well as comprehensive visibility on student progress throughout each tutorial by combining an online mathematics assessment system Numbas with the video conferencing platform Zoom. Overall, students found the format to be a positive alternative to face-to-face tutorials and one that compared favourably with alternative delivery methods. It is hoped that the findings of this study would be of use to other practitioners engaged in remotely delivered mathematics tutorials.
- Published
- 2024
23. Educator Perceptions of Self-Efficacy and Preparedness to Work in High Poverty Schools
- Author
-
Kristen Carroll, Juliann Sergi McBrayer, Marlynn Griffin, Taylor Norman, Summer Pannell, and Mary Josephine Carney
- Abstract
This study examined the perceptions of educators to determine if they felt that they were adequately prepared to teach in a high poverty school setting. The participants, educators from four school districts, completed a survey based on their perceptions of their own level of self-efficacy and preparedness to work in high poverty schools. The analyses indicated that, overall, educators felt well-prepared with limited supporting evidence to work in high poverty schools in the areas of student learning and engagement, which included curriculum and pedagogy, differentiation, and assessment. Findings further indicated a need for professional learning so educators can best support students in the high poverty setting in terms of problem solving when issues arise in the classroom. The implications for practice suggest that educators need support to ensure a high level of preparedness to work in high-poverty schools, as educators need to have a high level of self-efficacy to positively impact student success. Future research could help pinpoint specific areas of need within student learning and engagement to determine how to best develop professional learning opportunities that are purposeful, collaborative, and sustainable. Additional research should be conducted to determine if teachers' levels of self-efficacy and perceptions of preparedness are correlated to leadership style.
- Published
- 2024
24. Empowering Students to Create Their Dramatizations Increases Understanding of Physiology
- Author
-
Eka Febri Zulissetiana, Muhammad Irfannuddin, Siti Sarahdeaz Fazzaura Putri, Syifa Alkaf, Susilawati Susilawati, Jihan Marshanda, Ra Fadila Septiany, Hasyimiah Az-Zahra, and Robert G. Carroll
- Abstract
Complex subjects such as physiology can be challenging for students to learn. These challenges are not uncommon in implementing the learning process in physiology and affect learning outcomes. Dramatization is an interactive and effective method to improve learning outcomes. In a project designed by senior medical students, junior medical students were guided in creating dramatizations related to three topics. Senior students were trained and assisted to prepare scenarios and make videos. The dramatizations were then carried out with junior medical students to help them better understand physiology and pathophysiology topics. A group of junior students receiving the same topics in a lecture format served as a control group. Pretest and posttest questionnaires were used to measure the improvement of learning outcomes. Assessment results showed an increase in performance in both groups. This study shows that dramatizations provide an effective alternative to lectures for instructing junior medical students.
- Published
- 2024
- Full Text
- View/download PDF
25. Extending Science Instruction beyond the CER: Use of Critical Questions in the Argumentation of Middle School Science Students
- Author
-
E. Michael Nussbaum, Michael S. Van Winkle, Lixian Tian, LeAnn G. Putney, Margarita Huerta, Harsha N. Perera, Ian J. Dove, Alicia N. Herrera, and Kristoffer R. Carroll
- Abstract
Critiquing arguments is important for K-12 science students to learn but not emphasized by the predominant claim-evidence-reasoning (CER) argumentation model. Drawing on the work of Yu and Zenker (2020), and Dove and Nussbaum (2018), we developed a tool for supplementing CER with critical questions (CQs) from philosophy that cover most, if not all, the logical dimensions of argument critique. Six middle school science teachers designed lessons involving argumentation, including the use of CQs. We assessed the effects on student self-efficacy for engaging in argument critique, teacher self-efficacy for using argument pedagogy, and teachers' perceptions of the value of CQs. Qualitative data included teacher interviews, lesson transcripts, and student work samples. Quantitative data included surveys of student self-efficacy administered at the beginning and end of the school year. There was evidence suggesting an increase over time in students' confidence for engaging in argument critique and teachers' confidence with argument pedagogy. However, only four of the six teachers were confident and skilled enough to include CQs in their lessons. Those who did use CQs tended to perceive them as providing a helpful structure for critique, prompts for deeper thinking, and a tool for fostering critical classroom norms. Discussion of CQs may have benefitted students' writing by promoting peer critique and encouragement to elaborate. Overall, CQs afford students with a framework for judging argument strength. Scientific argumentation involving CQs provides a more contemporary philosophical basis for scientific argumentation than CER or the Toulmin model as it emphasizes the critical and dialogic nature of science.
- Published
- 2024
- Full Text
- View/download PDF
26. Ageing, Osteoporosis and Intellectual Disability; Risks Differ, and Diagnosis Can Be Missed
- Author
-
Eilish A. Burke, Rachael Carroll, Maire O'Dwyer, J. Bernard Walsh, Philip McCallion, and Mary McCarron
- Abstract
Background: People with intellectual disability often present atypically for various health conditions, making it challenging to identify concerns, particularly when communication challenges are also considered. Additionally, they may face barriers to healthcare access, resulting in many conditions going unnoticed. Health screening inequities are also evident in this population, and osteoporosis, a silent condition often only diagnosed postfracture, requires screening; however, if this does not happen, it may result in unnecessary fracture. Therefore the aim of this study is to identify predictors of osteoporosis in older adults with intellectual disability and examine potential inequity in the diagnosis of the condition. Methods: The study used data from the Intellectual Disability Supplement to The Irish Longitudinal Study on Ageing (IDS-TILDA). Bone quality was measured using quantitative ultrasound (QUS). Logistic regression was performed to identify significant predictors of poor bone quality, including chronic health conditions, dietary intake, medication use and activity levels. Results: Out of 575 participants who completed QUS, osteoporosis prevalence was objectively measured at 41%, with a further 33.2% measured within the osteopenic range, but less than 2 in 10 had a doctor's diagnosis of osteoporosis. Reported Dual-Energy X-ray Absorptiometry screening uptake was low at 18.2%. Three major predictor variables of osteoporosis and osteopenia were found significant: difficulty walking 100 yards, taking antiepileptic drugs medicines and taking proton pump inhibitors. The model achieved an overall classification accuracy of 70.8% for osteopenia and 72.5% for identifying osteoporosis. Conclusion: The study highlights the different risk factors in people with intellectual disability, the potential for missed diagnoses and the likelihood there is inadequate screening. There is an urgent need for robust risk assessment and reasonable adjustments to ensure equitable screening and targeted preventive strategies. Clinicians must consider specific concerns for this population to avoid missed diagnoses and reduce the adverse effects of osteoporosis/osteopenia, such as an increased risk of fragility fractures.
- Published
- 2024
- Full Text
- View/download PDF
27. Beyond Preferences in AI Alignment
- Author
-
Zhi-Xuan, Tan, Carroll, Micah, Franklin, Matija, and Ashton, Hal
- Subjects
Computer Science - Artificial Intelligence - Abstract
The dominant practice of AI alignment assumes (1) that preferences are an adequate representation of human values, (2) that human rationality can be understood in terms of maximizing the satisfaction of preferences, and (3) that AI systems should be aligned with the preferences of one or more humans to ensure that they behave safely and in accordance with our values. Whether implicitly followed or explicitly endorsed, these commitments constitute what we term a preferentist approach to AI alignment. In this paper, we characterize and challenge the preferentist approach, describing conceptual and technical alternatives that are ripe for further research. We first survey the limits of rational choice theory as a descriptive model, explaining how preferences fail to capture the thick semantic content of human values, and how utility representations neglect the possible incommensurability of those values. We then critique the normativity of expected utility theory (EUT) for humans and AI, drawing upon arguments showing how rational agents need not comply with EUT, while highlighting how EUT is silent on which preferences are normatively acceptable. Finally, we argue that these limitations motivate a reframing of the targets of AI alignment: Instead of alignment with the preferences of a human user, developer, or humanity-writ-large, AI systems should be aligned with normative standards appropriate to their social roles, such as the role of a general-purpose assistant. Furthermore, these standards should be negotiated and agreed upon by all relevant stakeholders. On this alternative conception of alignment, a multiplicity of AI systems will be able to serve diverse ends, aligned with normative standards that promote mutual benefit and limit harm despite our plural and divergent values., Comment: 26 pages (excl. references), 5 figures
- Published
- 2024
28. Scalable DAQ system operating the CHIPS-5 neutrino detector
- Author
-
Rancurel, Belén Alonso, Cao, Son, Carroll, Thomas J., Castellan, Rhys, Catano-Mur, Erika, Cesar, John P., Coelho, João A. B., Dills, Patrick, Dodwell, Thomas, Edmondson, Jack, van Eijk, Daan, Fetterly, Quinn, Garbal, Zoé, Germani, Stefano, Gilpin, Thomas, Giraudo, Anthony, Habig, Alec, Hanuska, Daniel, Hausner, Harry, Hernandez, Wilson Y., Holin, Anna, Huang, Junting, Jones, Sebastian B., Karle, Albrecht, Kileff, George, Jenkins, Kai R., Kooijman, Paul, Kreymer, Arthur, LaFond, Gabe M., Lang, Karol, Lazar, Jeffrey P., Li, Rui, Liu, Kexin, Loving, David A., Mánek, Petr, Marshak, Marvin L., Meier, Jerry R., Miller, William, Nelson, Jeffrey K., Ng, Christopher, Nichol, Ryan J., Paolone, Vittorio, Perch, Andrew, Pfützner, Maciej M., Radovic, Alexander, Rawlins, Katherine, Roedl, Patrick, Rogers, Lucas, Safa, Ibrahim, Sousa, Alexandre, Tingey, Josh, Thomas, Jennifer, Trokan-Tenorio, Jozef, Vahle, Patricia, Wade, Richard, Wendt, Christopher, Wendt, Daniel, Whitehead, Leigh H., Wolcott, Samuel, and Yuan, Tianlu
- Subjects
Physics - Instrumentation and Detectors - Abstract
The CHIPS R&D project focuses on development of low-cost water Cherenkov neutrino detectors through novel design strategies and resourceful engineering. This work presents an end-to-end DAQ solution intended for a recent 5 kt CHIPS prototype, which is largely based on affordable mass-produced components. Much like the detector itself, the presented instrumentation is composed of modular arrays that can be scaled up and easily serviced. A single such array can carry up to 30 photomultiplier tubes (PMTs) accompanied by electronics that generate high voltage in-situ and deliver time resolution of up to 0.69 ns. In addition, the technology is compatible with the White Rabbit timing system, which can synchronize its elements to within 100 ps. While deployment issues did not permit the presented DAQ system to operate beyond initial evaluation, the presented hardware and software successfully passed numerous commissioning tests that demonstrated their viability for use in a large-scale neutrino detector, instrumented with thousands of PMTs., Comment: 30 pages, 28 figures, submitted to MDPI Applied Sciences, Special Issue: Advanced Neutrino Detector Development and Application
- Published
- 2024
29. Design and Implementation of Smart Infrastructures and Connected Vehicles in A Mini-city Platform
- Author
-
Vargas, Daniel, Haque, Ethan, Carroll, Matthew, Perez, Daniel, Roman, Tyler, Nguyen, Phong, and Habibi, Golnaz
- Subjects
Computer Science - Robotics ,68F00 (Primary), 68F11 (Secondary) - Abstract
This paper presents a 1/10th scale mini-city platform used as a testing bed for evaluating autonomous and connected vehicles. Using the mini-city platform, we can evaluate different driving scenarios including human-driven and autonomous driving. We provide a unique, visual feature-rich environment for evaluating computer vision methods. The conducted experiments utilize onboard sensors mounted on a robotic platform we built, allowing them to navigate in a controlled real-world urban environment. The designed city is occupied by cars, stop signs, a variety of residential and business buildings, and complex intersections mimicking an urban area. Furthermore, We have designed an intelligent infrastructure at one of the intersections in the city which helps safer and more efficient navigation in the presence of multiple cars and pedestrians. We have used the mini-city platform for the analysis of three different applications: city mapping, depth estimation in challenging occluded environments, and smart infrastructure for connected vehicles. Our smart infrastructure is among the first to develop and evaluate Vehicle-to-Infrastructure (V2I) communication at intersections. The intersection-related result shows how inaccuracy in perception, including mapping and localization, can affect safety. The proposed mini-city platform can be considered as a baseline environment for developing research and education in intelligent transportation systems., Comment: 8 pages, 9 figures, Presented at 2024 IEEE ITSC Conference, 23 Citations
- Published
- 2024
30. Discovery of Dynamical Heterogeneity in a Supercooled Magnetic Monopole Fluid
- Author
-
Dasini, Jahnatta, Carroll, Chaia, Hsu, Chun-Chih, Takahashi, Hiroto, Murphy, Jack, Sharma, Sudarshan, Dawson, Catherine, Jerzembeck, Fabian, Blundell, Stephen J., Luke, Graeme, Davis, J. C. Séamus, and Ward, Jonathan
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Dynamical heterogeneity in which transitory local fluctuations occur in the conformation and dynamics of constituent particles, is essential for evolution of supercooled liquids into the glass state. Yet its microscopic spatiotemporal phenomenology has remained unobservable in virtually all supercooled glass forming liquids. Recent theoretical advances predict that corresponding dynamical heterogeneity could also occur in supercooled magnetic monopole fluids. Motivated thus, we searched for dynamical heterogeneity when entering the supercooled monopole fluid of Dy2Ti2O7. By measuring microsecond-resolved spontaneous magnetization noise M(t,T) at temperatures between 15 mK
- Published
- 2024
31. Energy Transport Among Highly-Polarized Atoms
- Author
-
Opsahl, Catherine D., Jiang, Yuan, Grubb, Samantha A., Okinaka, Alan T., Chlanda, Nicolaus A., Conley, Hannah S., Kirk, Aidan D., Spielman, Sarah E., Carroll, Thomas J., and Noel, Michael W.
- Subjects
Physics - Atomic Physics ,Quantum Physics - Abstract
A static electric field of a few V/cm shifts the energy levels of ultracold Rydberg atoms in a magneto-optical trap. For a given principle quantum number, most of the energy levels are nearly degenerate at zero field and fan out with increasing field to form a manifold. We excite Rydberg atoms to energy levels near the center of the manifold, where the spacing is nearly harmonic, and allow them to exchange energy via resonant dipole-dipole interactions. We measure the time evolution as energy spreads away from the center of the manifold, which reveals that the system fails to thermalize for long interaction times. A computational model that includes only a few essential features of the system qualitatively agrees with this result., Comment: 6 pages, 4 figures
- Published
- 2024
32. When Qualitative Research Meets Large Language Model: Exploring the Potential of QualiGPT as a Tool for Qualitative Coding
- Author
-
Zhang, He, Wu, Chuhao, Xie, Jingyi, Rubino, Fiona, Graver, Sydney, Kim, ChanMin, Carroll, John M., and Cai, Jie
- Subjects
Computer Science - Human-Computer Interaction - Abstract
Qualitative research, renowned for its in-depth exploration of complex phenomena, often involves time-intensive analysis, particularly during the coding stage. Existing software for qualitative evaluation frequently lacks automatic coding capabilities, user-friendliness, and cost-effectiveness. The advent of Large Language Models (LLMs) like GPT-3 and its successors marks a transformative era for enhancing qualitative analysis. This paper introduces QualiGPT, a tool developed to address the challenges associated with using ChatGPT for qualitative analysis. Through a comparative analysis of traditional manual coding and QualiGPT's performance on both simulated and real datasets, incorporating both inductive and deductive coding approaches, we demonstrate that QualiGPT significantly improves the qualitative analysis process. Our findings show that QualiGPT enhances efficiency, transparency, and accessibility in qualitative coding. The tool's performance was evaluated using inter-rater reliability (IRR) measures, with results indicating substantial agreement between human coders and QualiGPT in various coding scenarios. In addition, we also discuss the implications of integrating AI into qualitative research workflows and outline future directions for enhancing human-AI collaboration in this field., Comment: arXiv admin note: substantial text overlap with arXiv:2310.07061
- Published
- 2024
33. The Future of Learning: Large Language Models through the Lens of Students
- Author
-
Zhang, He, Xie, Jingyi, Wu, Chuhao, Cai, Jie, Kim, ChanMin, and Carroll, John M.
- Subjects
Computer Science - Human-Computer Interaction ,Computer Science - Computers and Society - Abstract
As Large-Scale Language Models (LLMs) continue to evolve, they demonstrate significant enhancements in performance and an expansion of functionalities, impacting various domains, including education. In this study, we conducted interviews with 14 students to explore their everyday interactions with ChatGPT. Our preliminary findings reveal that students grapple with the dilemma of utilizing ChatGPT's efficiency for learning and information seeking, while simultaneously experiencing a crisis of trust and ethical concerns regarding the outcomes and broader impacts of ChatGPT. The students perceive ChatGPT as being more "human-like" compared to traditional AI. This dilemma, characterized by mixed emotions, inconsistent behaviors, and an overall positive attitude towards ChatGPT, underscores its potential for beneficial applications in education and learning. However, we argue that despite its human-like qualities, the advanced capabilities of such intelligence might lead to adverse consequences. Therefore, it's imperative to approach its application cautiously and strive to mitigate potential harms in future developments.
- Published
- 2024
34. Evaluation and statistical correction of area-based heat index forecasts that drive a heatwave warning service
- Author
-
Loveday, Nicholas and Carroll, Maree
- Subjects
Physics - Atmospheric and Oceanic Physics - Abstract
This study evaluates the performance of the area-based, district heatwave forecasts that drive the Australian heatwave warning service. The analysis involves using a recently developed approach of scoring multicategorical forecasts using the FIxed Risk Multicategorical (FIRM) scoring framework. Additionally, we quantify the stability of the district forecasts between forecast updates. Notably, at longer lead times, a discernible overforecast bias exists that leads to issuing severe and extreme heatwave district forecasts too frequently. Consequently, at shorter lead times forecast heatwave categories are frequently downgraded with subsequent revisions. To address these issues, we demonstrate how isotonic regression can be used to conditionally bias correct the district forecasts. Finally, using synthetic experiments, we illustrate that even if an area warning is derived from a perfectly calibrated gridded forecast, the area warning will be biased in most situations. We show how these biases can also be corrected using isotonic regression which could lead to a better heatwave warning service. Importantly, the evaluation and bias correction approaches demonstrated in this paper are relevant to forecast parameters other than heat indices., Comment: 16 pages, 7 Figures
- Published
- 2024
35. Emerging Practices for Large Multimodal Model (LMM) Assistance for People with Visual Impairments: Implications for Design
- Author
-
Xie, Jingyi, Yu, Rui, Zhang, He, Lee, Sooyeon, Billah, Syed Masum, and Carroll, John M.
- Subjects
Computer Science - Human-Computer Interaction - Abstract
People with visual impairments perceive their environment non-visually and often use AI-powered assistive tools to obtain textual descriptions of visual information. Recent large vision-language model-based AI-powered tools like Be My AI are more capable of understanding users' inquiries in natural language and describing the scene in audible text; however, the extent to which these tools are useful to visually impaired users is currently understudied. This paper aims to fill this gap. Our study with 14 visually impaired users reveals that they are adapting these tools organically -- not only can these tools facilitate complex interactions in household, spatial, and social contexts, but they also act as an extension of users' cognition, as if the cognition were distributed in the visual information. We also found that although the tools are currently not goal-oriented, users accommodate this limitation and embrace the tools' capabilities for broader use. These findings enable us to envision design implications for creating more goal-oriented, real-time processing, and reliable AI-powered assistive technology.
- Published
- 2024
36. Efficient Automated Circuit Discovery in Transformers using Contextual Decomposition
- Author
-
Hsu, Aliyah R., Zhou, Georgia, Cherapanamjeri, Yeshwanth, Huang, Yaxuan, Odisho, Anobel Y., Carroll, Peter R., and Yu, Bin
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Machine Learning - Abstract
Automated mechanistic interpretation research has attracted great interest due to its potential to scale explanations of neural network internals to large models. Existing automated circuit discovery work relies on activation patching or its approximations to identify subgraphs in models for specific tasks (circuits). They often suffer from slow runtime, approximation errors, and specific requirements of metrics, such as non-zero gradients. In this work, we introduce contextual decomposition for transformers (CD-T) to build interpretable circuits in large language models. CD-T can produce circuits of arbitrary level of abstraction, and is the first able to produce circuits as fine-grained as attention heads at specific sequence positions efficiently. CD-T consists of a set of mathematical equations to isolate contribution of model features. Through recursively computing contribution of all nodes in a computational graph of a model using CD-T followed by pruning, we are able to reduce circuit discovery runtime from hours to seconds compared to state-of-the-art baselines. On three standard circuit evaluation datasets (indirect object identification, greater-than comparisons, and docstring completion), we demonstrate that CD-T outperforms ACDC and EAP by better recovering the manual circuits with an average of 97% ROC AUC under low runtimes. In addition, we provide evidence that faithfulness of CD-T circuits is not due to random chance by showing our circuits are 80% more faithful than random circuits of up to 60% of the original model size. Finally, we show CD-T circuits are able to perfectly replicate original models' behavior (faithfulness $ = 1$) using fewer nodes than the baselines for all tasks. Our results underscore the great promise of CD-T for efficient automated mechanistic interpretability, paving the way for new insights into the workings of large language models.
- Published
- 2024
37. LLM-ARC: Enhancing LLMs with an Automated Reasoning Critic
- Author
-
Kalyanpur, Aditya, Saravanakumar, Kailash Karthik, Barres, Victor, Chu-Carroll, Jennifer, Melville, David, and Ferrucci, David
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Logic in Computer Science - Abstract
We introduce LLM-ARC, a neuro-symbolic framework designed to enhance the logical reasoning capabilities of Large Language Models (LLMs), by combining them with an Automated Reasoning Critic (ARC). LLM-ARC employs an Actor-Critic method where the LLM Actor generates declarative logic programs along with tests for semantic correctness, while the Automated Reasoning Critic evaluates the code, runs the tests and provides feedback on test failures for iterative refinement. Implemented using Answer Set Programming (ASP), LLM-ARC achieves a new state-of-the-art accuracy of 88.32% on the FOLIO benchmark which tests complex logical reasoning capabilities. Our experiments demonstrate significant improvements over LLM-only baselines, highlighting the importance of logic test generation and iterative self-refinement. We achieve our best result using a fully automated self-supervised training loop where the Actor is trained on end-to-end dialog traces with Critic feedback. We discuss potential enhancements and provide a detailed error analysis, showcasing the robustness and efficacy of LLM-ARC for complex natural language reasoning tasks.
- Published
- 2024
38. scores: A Python package for verifying and evaluating models and predictions with xarray
- Author
-
Leeuwenburg, Tennessee, Loveday, Nicholas, Ebert, Elizabeth E., Cook, Harrison, Khanarmuei, Mohammadreza, Taggart, Robert J., Ramanathan, Nikeeth, Carroll, Maree, Chong, Stephanie, Griffiths, Aidan, and Sharples, John
- Subjects
Physics - Atmospheric and Oceanic Physics ,Statistics - Applications - Abstract
`scores` is a Python package containing mathematical functions for the verification, evaluation and optimisation of forecasts, predictions or models. It supports labelled n-dimensional (multidimensional) data, which is used in many scientific fields and in machine learning. At present, `scores` primarily supports the geoscience communities; in particular, the meteorological, climatological and oceanographic communities. `scores` not only includes common scores (e.g., Mean Absolute Error), it also includes novel scores not commonly found elsewhere (e.g., FIxed Risk Multicategorical (FIRM) score, Flip-Flop Index), complex scores (e.g., threshold-weighted continuous ranked probability score), and statistical tests (such as the Diebold Mariano test). It also contains isotonic regression which is becoming an increasingly important tool in forecast verification and can be used to generate stable reliability diagrams. Additionally, it provides pre-processing tools for preparing data for scores in a variety of formats including cumulative distribution functions (CDF). At the time of writing, `scores` includes over 50 metrics, statistical techniques and data processing tools. All of the scores and statistical techniques in this package have undergone a thorough scientific and software review. Every score has a companion Jupyter Notebook tutorial that demonstrates its use in practice. `scores` supports `xarray` datatypes, allowing it to work with Earth system data in a range of formats including NetCDF4, HDF5, Zarr and GRIB among others. `scores` uses Dask for scaling and performance. Support for `pandas` is being introduced. The `scores` software repository can be found at https://github.com/nci/scores/, Comment: Minor revisions to text and table. Updated title. 6 pages, 1 table. Software repository at https://github.com/nci/scores/
- Published
- 2024
- Full Text
- View/download PDF
39. Quantification of Collateral Supply with Local-AIF Dynamic Susceptibility Contrast MRI Predicts Infarct Growth
- Author
-
Liu, Mira M., Saadat, Niloufar, Roth, Steven P., Niekrasz, Marek A., Giurcanu, Mihai, Carroll, Timothy J., and Christoforidis, Gregory A.
- Subjects
Physics - Medical Physics - Abstract
In ischemic stroke, leptomeningeal collaterals can provide compensatory blood flow to tissue at risk despite an occlusion, and impact treatment response and infarct growth. The purpose of this work is to test the hypothesis that local perfusion with an appropriate Local Arterial Input Function (AIF) is needed to quantify the degree of collateral blood supply in tissue distal to an occlusion. Seven experiments were conducted in a pre-clinical middle cerebral artery occlusion model. Magnetic resonance dynamic susceptibility contrast (DSC) was imaged and post-processed as cerebral blood flow maps with both a traditionally chosen single arterial input function (AIF) applied globally to the whole brain (i.e. "Global-AIF") and a novel automatic delay and dispersion corrected AIF (i.e. "Local AIF") that is sensitive to retrograde flow. Pial collateral recruitment was assessed from x-ray angiograms and infarct growth via serially acquired diffusion weighted MRI scans both blinded to DSC. The degree of collateralization at x-ray correlated strongly with quantitative perfusion determined using the Local AIF in the ischemic penumbra (R2=0.81) compared to a traditionally chosen Global-AIF (R2=0.05). Quantitative perfusion calculated using a Local-AIF was negatively correlated (less infarct progression as local perfusion increased) with infarct growth (R2 = 0.79) compared to Global-AIF (R2=0.02). Local DSC perfusion with a Local-AIF is more accurate for assessing tissue status and degree of leptomeningeal collateralization than traditionally chosen AIFs. These findings support use of a Local-AIF in determining quantitative tissue perfusion with collateral supply in occlusive disease., Comment: 13 pages, 5 figures
- Published
- 2024
40. Performance of a modular ton-scale pixel-readout liquid argon time projection chamber
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Aimard, B., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andrade, D. A., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barenboim, G., Alzás, P. Barham, Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bracinik, J., Braga, D., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calin, M., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., Gago, A. M., Galizzi, F., Gallagher, H., Gallas, A., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerard, E., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmueller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Henry, S., Morquecho, M. A. Hernandez, Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Hostert, M., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Fernández, D. José, Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khotjantsev, A., Khvedelidze, A., Kim, D., Kim, J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunze, P., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Lawrence, A., Laycock, P., Lazanu, I., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Lee, C., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., Li, J. -Y, Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Ling, J., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., Maalmi, J., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marsden, D., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., Mazzacane, A., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, J., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Miccoli, A., Michna, G., Mikola, V., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Mote, M., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Nath, A., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papadimitriou, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pinchault, J., Pitts, K., Plows, K., Plunkett, R., Pollack, C., Pollman, T., Polo-Toledo, D., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reggiani-Guzzo, M., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Restrepo, D., Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Saa-Hernandez, A., Saakyan, R., Sacerdoti, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Soleti, S. R., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thiebault, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Vizcaya-Hernandez, A., Vrba, T., Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Wenzel, H., Westerdale, S., Wetstein, M., Whalen, K., Whilhelmi, J., White, A., Whitehead, L. H., Whittington, D., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations., Comment: 47 pages, 41 figures
- Published
- 2024
41. National Longitudinal School Database (NLSD): Data Description
- Author
-
Jamie M. Carroll, Douglas N. Harris, Anjana Nair, and Emilia Nordgren
- Abstract
The National Longitudinal School Database (NLSD) comprises three files, making up a near-census of all schools and districts in the United States from school years 1990-91 to 2019-20. The three files are the Public School File, Private School File, and District File. As evident by the titles, the first two files report data at the school-level for both public and private schools. The District File reports data at the public school district-level. We have set up these files so that they can be easily merged together in a variety of ways. This data set is unique in that it allows researchers to examine various aspects of school choice across traditional public schools, charter schools, magnet schools, and private schools. These data have been used to examine changes in and effects of charter schools over time (Chen & Harris, 2022) as well as trends and predictors of school closures (Harris & Martinez-Pabon, 2023). This Codebook provides documentation on the sources and methods used to create the first release of the NLSD. It is organized into three sections, corresponding to the three NSLD files (Public, Private, District). Each of the three data files are in a "long" format, such that each row observation provides data for a given school (or school district) in a given school year (1990-1991 through 2019-2020). The accompanying Appendix spreadsheet describes the variables in each data set in more detail, including information on years available, number of observations, ranges, blanks and missing data, and data source. In future releases, we expect to augment the NLSD with additional data beyond the 2019-20 school year and from other sources relevant to its users. Potential developments include integrating data from the Office of Civil Rights, incorporating state-level charter and school take over policies, and exploring methodological refinements to the existing data.
- Published
- 2023
42. Sex Gaps in Education in England. Research Report
- Author
-
Cambridge University Press & Assessment (United Kingdom) and Matthew Carroll
- Abstract
Each year, when GCSE and A level results are published, a common talking point in media coverage is how results of male and female students differ. This reflects a popular fascination with such differences, but there is also a deeper, longstanding research interest in sex differences in education, not just in England, but around the world. Research into educational sex gaps in England has a long history, but there have been few, if any, systematic examinations of sex gaps in recent years. This is particularly pertinent, as recent years have seen widespread disruption due to the COVID-19 pandemic, and substantial reforms to GCSEs and A levels, both of which could have affected the existence and magnitude of sex gaps. Hence, there is value in looking at the state of educational sex gaps, to gain a better understanding of the state of the system following this period of change and disruption. This report documents the presence of sex gaps at multiple stages of education in England, using data from publicly available datasets that all provide data across multiple years. It addresses gaps from Early Years Foundation Stage, through early formal education in Key Stage 1 and Key Stage 2, through to high stakes examinations at GCSE and A level, up to Higher Education applications and undergraduate degree results. Overall, results indicate that gaps in attainment and subject choice between male and female students have persisted over recent years, largely in the same directions as those identified by previous research. This suggests, then, that neither recent reforms nor pandemic-related disruption have changed the direction of existing patterns, and that, aside perhaps from uptake of some science subjects, there is limited evidence of any longer-term reduction in gaps.
- Published
- 2023
43. White Americans Report More Positive than Negative Affect after Writing a Personal Diversity Statement
- Author
-
Ellen M. Carroll, Tammi D. Walker, and Alyssa Croft
- Abstract
An increasing number of colleges and universities now require graduate student and faculty applicants to submit personal diversity statements for evaluation. Despite their rising use, little is known about how the personal diversity statement writing process is experienced by applicants. For White individuals in particular, their sources of egalitarian motivation may influence affective responses to writing a diversity statement given the content that is typical of these application components and the unease demonstrated in response to diversity-related contexts that is characteristic of White people with a strong external motivation to respond without prejudice. In the present study, White students at an American university participated in a personal diversity statement writing task and self-reported their motivation to respond without prejudice (in advance of the session) and affect (following the writing task). Despite prior research suggesting that they would feel otherwise, participants reported more positive affect compared to negative affect in relation to writing the diversity statement. When considering their sources of motivation, however, White individuals who were more externally motivated to respond without prejudice reported slightly more negative affect in reaction to the diversity statement writing task when compared to those low in external motivation. These findings have implications for the inclusion of personal diversity statements in candidate application materials at various levels of higher education.
- Published
- 2024
- Full Text
- View/download PDF
44. World-Making through a Feminist Abolitionist Lens in a STEAM Middle School Program
- Author
-
Melita Morales, Mya Franklin, Shirin Vossoughi, Sam Carroll, Onam Lansana, Megan Bang, and Sahibzada May
- Abstract
The maker movement propagated throughout educational spaces alongside promises that technological and design literacies could be harnessed to shape equitable social futures. However, researchers have highlighted the ways makerspaces can reinforce hierarchies of race, gender, and class. This paper builds on research that seeks to support girls' making through broader sociopolitical and ethical commitments. We consider what an everyday pedagogy of feminist abolition looked like in a makerspace, with a focus on how educators responded to emergent social needs within and across gender lines. Our data sources (extensive field notes, audio-video recordings, photographs, and student interviews) are drawn from Hubspace, a 6-week summer program serving Black, Latine/x, and South Asian middle school youth and grounded in expansive forms of storytelling, coding, engineering, music, writing, and art. In closely analyzing routine forms of educator reflection alongside the design decisions, pedagogical moves and forms of student sense-making they supported, we found that student and educator sociopolitical learning emerged together to build what became possible in the culture of the space over time. Across three cases, we show how such pedagogies offered lived models and creative languages for practicing restorative and just social relationships. Each of the cases tell the story of different moments when gender became important to the ways participants were working to recognize and desettle received terms of thought and generate alternate forms of thinking, living, and relating, or the making of new stories and worlds.
- Published
- 2024
- Full Text
- View/download PDF
45. Procedural Fidelity Reporting in 'The Analysis of Verbal Behavior' from 2007-2021
- Author
-
Elizabeth J. Preas, Mary E. Halbur, and Regina A. Carroll
- Abstract
Procedural fidelity refers to the degree to which procedures for an assessment or intervention (i.e., independent variables) are implemented consistent with the prescribed protocols. Procedural fidelity is an important factor in demonstrating the internal validity of an experiment and clinical treatments. Previous reviews evaluating the inclusion of procedural fidelity in published empirical articles demonstrated underreporting of procedural fidelity procedures and measures within specific journals. We conducted a systematic review of "The Analysis of Verbal Behavior" (TAVB) to evaluate the trends in procedural fidelity reporting from 2007 to 2021. Of the 253 articles published in "TAVB" during the reporting period, 144 of the articles (168 studies) met inclusionary criteria for further analysis. Our results showed that 54% of studies reported procedural fidelity data, which is slightly higher than previous reviews. In comparison, interobserver-agreement data were reported for a high percentage of studies reviewed (i.e., 93%). Further discussion of results and applied research implications are included.
- Published
- 2024
- Full Text
- View/download PDF
46. Doping Liquid Argon with Xenon in ProtoDUNE Single-Phase: Effects on Scintillation Light
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Aimard, B., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Es-sghir, H. Amar, Amedo, P., Anderson, J., Andrade, D. A., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barenboim, G., BarhamAlzás, P., Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bracinik, J., Braga, D., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calin, M., Calivers, L., Calvo, E., Caminata, A., Campanelli, W., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clair, J., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collot, J., Conley, E., Conrad, J. M., Convery, M., Cooke, P., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., De la Torre, A., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dvornikov, O., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferraro, F., Ferry, G., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gabrielli, A., Gago, A. M., Galizzi, F., Gallagher, H., Gallas, A., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, P., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerard, E., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Haaf, K., Habig, A., Hadavand, H., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmueller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Henry, S., Morquecho, M. A. Hernandez, Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horton-Smith, G. A., Hostert, M., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Joaquim, F. R., Johnson, W., Jones, B., Jones, R., Fernández, D. José, Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kamiya, F., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., King, B., Kirby, B., Kirby, M., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kuhlmann, S., Kumar, J., Kumar, P., Kumaran, S., Kunze, P., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Lawrence, A., Laycock, P., Lazanu, I., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Lee, C., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., Li, J. -Y., Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Lineros, R. A., Ling, J., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, March, N. López, Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., Maalmi, J., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marsden, D., Marshak, M., Marshall, C. M., Marshall, J., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., Mazzacane, A., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Messier, M. D., Metallo, S., Metcalf, J., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Miccoli, A., Michna, G., Mikola, V., Milincic, R., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Mote, M., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nalbandyan, M., Nandakumar, R., Naples, D., Narita, S., Nath, A., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papadimitriou, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pinchault, J., Plows, K., Plunkett, R., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Poppi, F., Pordes, S., Porter, J., Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, S., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Rafique, A., Raguzin, E., Rai, M., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reggiani-Guzzo, M., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Restrepo, D., Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Saa-Hernandez, A., Saakyan, R., Sacerdoti, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segreto, E., Selyunin, A., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Shaw, K., Shaw, T., Shchablo, K., Shepherd-Themistocleous, C., Sheshukov, A., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Soleti, S. R., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thiebault, A., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Varner, G., Vasina, S., Vaughan, N., Vaziri, K., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Villa, E., Viren, B., Vizcaya-Hernandez, A., Vrba, T., Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, M., Wei, H., Weinstein, A., Wenzel, H., Westerdale, S., Wetstein, M., Whalen, K., Whilhelmi, J., White, A., Whitehead, L. H., Whittington, D., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors - Abstract
Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen., Comment: 36 pages, 20 figures. Corrected author list; corrected typos across paper and polished text
- Published
- 2024
47. Pharmacokinetic Comparison of Selective Prostatic Arterial and Intravenous PSMA PET/CT Radioligand Infusions in Primary Prostatic Adenocarcinoma.
- Author
-
Kohlbrenner, Ryan, Wu, Xiao, Nguyen, Hao G, Cooperberg, Matthew R, Chakravarty, Tushar, Carroll, Peter R, and Hope, Thomas A
- Subjects
Biomedical and Clinical Sciences ,Clinical Sciences ,Oncology and Carcinogenesis ,Biomedical Imaging ,Cancer ,Prostate Cancer ,Aging ,Urologic Diseases ,Good Health and Well Being ,Humans ,Male ,Positron Emission Tomography Computed Tomography ,Aged ,Prospective Studies ,Prostatic Neoplasms ,Middle Aged ,Gallium Radioisotopes ,Prostate ,Gallium Isotopes ,Radiopharmaceuticals ,Infusions ,Intravenous ,Adenocarcinoma ,Medical and Health Sciences ,Nuclear Medicine & Medical Imaging ,Clinical sciences - Abstract
Background Intravenous prostate-specific membrane antigen (PSMA)-targeted radioligand therapy improves survival in men with metastatic castration-resistant prostate cancer. Yet, the impact of selective prostatic arterial administration on primary tumor uptake is unclear. Purpose To compare gallium 68 (68Ga)-PSMA-11 uptake using dynamic PET/CT in prostatic tumoral volumes of interest (VOIs) during intravenous and selective prostatic arterial infusions for individuals with untreated, high-risk prostate cancer. Materials and Methods In this prospective, intraindividual comparative study conducted at an academic medical center, five men aged 58, 61, 64, 66, and 68 years with treatment-naive prostate cancer were enrolled between January 2022 and February 2023 and underwent two dynamic 68Ga-PSMA-11 PET/CT examinations 1 week apart. During the first examination, the radiotracer was administered intravenously. During the second administration, the radiotracer was delivered into either the right or left prostatic artery through an angiographically placed microcatheter. The primary outcome was maximum standardized uptake value (SUVmax) in prostatic tumoral VOIs. The secondary outcomes included mean SUV (SUVmean) in prostatic tumoral VOIs and area under the SUVmean curves (AUC). Longitudinal mixed-effects models were used to compare dynamic SUVmax and SUVmean time-activity curves (TACs), and paired t tests were used for the remaining data. Results The mean SUVmax within tumoral VOIs was 14 (range, 3-43) for venous sessions and 938 (range, 460-1436) for arterial sessions (P = .008). The SUVmean within VOIs was greater during arterial sessions (P < .001) overall and 46-fold and 19-fold greater at peak uptake and final time points, respectively. The mean AUC was greater on arterial TACs than on venous TACs at 14600 SUV × min (range, 8353-20025 SUV × min) and 240 SUV × min (range, 69-622 SUV × min), respectively (P = .002). Conclusion Selective prostatic arterial infusion resulted in greater 68Ga-PSMA-11 tumoral SUV than intravenous infusion. Further study of local-regional, intra-arterial delivery of a PSMA-targeted theranostic agent is warranted in high-risk prostate cancer. ClinicalTrials.gov identifier: NCT04976257 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Civelek in this issue.
- Published
- 2024
48. Distinct anal microbiome is correlated with anal cancer precursors in MSM with HIV.
- Author
-
Brickman, Cristina, Agnello, Melissa, Imam, Nabeel, Camejo, Pamela, Pino, Rodolfo, Carroll, Lauren, Chein, Aung, and Palefsky, Joel
- Subjects
Humans ,Male ,Cross-Sectional Studies ,Anus Neoplasms ,HIV Infections ,Homosexuality ,Male ,Adult ,Anal Canal ,Feces ,Middle Aged ,Microbiota ,Papillomavirus Infections ,Squamous Intraepithelial Lesions ,RNA ,Ribosomal ,16S ,Sequence Analysis ,DNA ,DNA ,Ribosomal - Abstract
OBJECTIVES: Anal cancer risk is elevated in MSM with HIV (MSMWH). Anal high-risk human papillomavirus (hr-HPV) infection is necessary but insufficient to develop high-grade squamous intraepithelial lesion (HSIL), the anal cancer precursor, suggesting additional factors. We sought to determine whether the microbiome of the anal canal is distinct by comparing it with the microbiome of stool. We also sought to determine whether changes in the anal microbiome are associated with HSIL among MSMWH. DESIGN: Cross-sectional comparison of the microbiome of the anal canal with the microbiome of stool in MSMWH and cross-sectional comparison of the anal microbiome of MSMWH with anal HSIL with the anal microbiome of MSMWH without anal HSIL. METHODS: Sterile swabs were used to sample the anus of MSMWH for microbiome and HPV testing, followed by high-resolution anoscopy. Stool samples were mailed from home. 16S sequencing was used for bacterial identification. Measures of alpha diversity, beta diversity, and differential abundance analysis were used to compare samples. RESULTS: One hundred sixty-six anal samples and 103 matching stool samples were sequenced. Beta diversity showed clustering of stool and anal samples. Of hr-HPV-positive MSMWH, 31 had HSIL and 13 had no SIL. Comparison of the microbiome between these revealed 28 different species. The highest-fold enrichment among MSMWH/hr-HPV/HSIL included pro-inflammatory and carcinogenic Prevotella, Parasuterella, Hungatella, Sneathia, and Fusobacterium species. The anti-inflammatory Anaerostipes caccae showed the greatest reduction among MSMWH/hr-HPV/HSIL. CONCLUSION: The anal microbiome is distinct from stool. A pro-inflammatory and carcinogenic environment may be associated with anal HSIL.
- Published
- 2024
49. Diversity and scale: Genetic architecture of 2068 traits in the VA Million Veteran Program
- Author
-
Verma, Anurag, Huffman, Jennifer E, Rodriguez, Alex, Conery, Mitchell, Liu, Molei, Ho, Yuk-Lam, Kim, Youngdae, Heise, David A, Guare, Lindsay, Panickan, Vidul Ayakulangara, Garcon, Helene, Linares, Franciel, Costa, Lauren, Goethert, Ian, Tipton, Ryan, Honerlaw, Jacqueline, Davies, Laura, Whitbourne, Stacey, Cohen, Jeremy, Posner, Daniel C, Sangar, Rahul, Murray, Michael, Wang, Xuan, Dochtermann, Daniel R, Devineni, Poornima, Shi, Yunling, Nandi, Tarak Nath, Assimes, Themistocles L, Brunette, Charles A, Carroll, Robert J, Clifford, Royce, Duvall, Scott, Gelernter, Joel, Hung, Adriana, Iyengar, Sudha K, Joseph, Jacob, Kember, Rachel, Kranzler, Henry, Kripke, Colleen M, Levey, Daniel, Luoh, Shiuh-Wen, Merritt, Victoria C, Overstreet, Cassie, Deak, Joseph D, Grant, Struan FA, Polimanti, Renato, Roussos, Panos, Shakt, Gabrielle, Sun, Yan V, Tsao, Noah, Venkatesh, Sanan, Voloudakis, Georgios, Justice, Amy, Begoli, Edmon, Ramoni, Rachel, Tourassi, Georgia, Pyarajan, Saiju, Tsao, Philip, O'Donnell, Christopher J, Muralidhar, Sumitra, Moser, Jennifer, Casas, Juan P, Bick, Alexander G, Zhou, Wei, Cai, Tianxi, Voight, Benjamin F, Cho, Kelly, Gaziano, J Michael, Madduri, Ravi K, Damrauer, Scott, and Liao, Katherine P
- Subjects
Epidemiology ,Biological Sciences ,Health Sciences ,Genetics ,Human Genome ,2.1 Biological and endogenous factors ,Mental health ,Humans ,Male ,Genetic Predisposition to Disease ,Genetic Variation ,Genome-Wide Association Study ,Longitudinal Studies ,Polymorphism ,Single Nucleotide ,Quantitative Trait Loci ,United States ,United States Department of Veterans Affairs ,Veterans ,Female ,General Science & Technology - Abstract
One of the justifiable criticisms of human genetic studies is the underrepresentation of participants from diverse populations. Lack of inclusion must be addressed at-scale to identify causal disease factors and understand the genetic causes of health disparities. We present genome-wide associations for 2068 traits from 635,969 participants in the Department of Veterans Affairs Million Veteran Program, a longitudinal study of diverse United States Veterans. Systematic analysis revealed 13,672 genomic risk loci; 1608 were only significant after including non-European populations. Fine-mapping identified causal variants at 6318 signals across 613 traits. One-third (n = 2069) were identified in participants from non-European populations. This reveals a broadly similar genetic architecture across populations, highlights genetic insights gained from underrepresented groups, and presents an extensive atlas of genetic associations.
- Published
- 2024
50. The Modeled Seasonal Cycles of Surface N2O Fluxes and Atmospheric N2O
- Author
-
Sun, Qing, Joos, Fortunat, Lienert, Sebastian, Berthet, Sarah, Carroll, Dustin, Gong, Cheng, Ito, Akihiko, Jain, Atul K, Kou‐Giesbrecht, Sian, Landolfi, Angela, Manizza, Manfredi, Pan, Naiqing, Prather, Michael, Regnier, Pierre, Resplandy, Laure, Séférian, Roland, Shi, Hao, Suntharalingam, Parvadha, Thompson, Rona L, Tian, Hanqin, Vuichard, Nicolas, Zaehle, Sönke, and Zhu, Qing
- Subjects
Earth Sciences ,Atmospheric Sciences ,Climate Action ,surface N2O emissions ,tropospheric N2O ,seasonal cycle ,terrestrial biosphere model ,ocean biogeochemistry model ,Geochemistry ,Oceanography ,Meteorology & Atmospheric Sciences ,Geoinformatics ,Climate change impacts and adaptation - Abstract
Nitrous oxide (N2O) is a greenhouse gas and stratospheric ozone-depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N2O-depleted air from the stratosphere to partly cause the seasonality in tropospheric N2O (aN2O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N2O Model Intercomparison Project with tropospheric transport modeling to simulate aN2O at eight remote air sampling sites for modern and pre-industrial periods. Models show general agreement on the seasonal phasing of zonal-average N2O fluxes for most sites, but seasonal peak-to-peak amplitudes differ several-fold across models. The modeled seasonal amplitude of surface aN2O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN2O, inferred by the difference between the surface-troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre-industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN2O seasonality. Considering the large model spread, in situ aN2O observations and atmospheric transport-chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon-nitrogen cycles under ongoing global warming.
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.