Back to Search Start Over

LLM-ARC: Enhancing LLMs with an Automated Reasoning Critic

Authors :
Kalyanpur, Aditya
Saravanakumar, Kailash Karthik
Barres, Victor
Chu-Carroll, Jennifer
Melville, David
Ferrucci, David
Publication Year :
2024

Abstract

We introduce LLM-ARC, a neuro-symbolic framework designed to enhance the logical reasoning capabilities of Large Language Models (LLMs), by combining them with an Automated Reasoning Critic (ARC). LLM-ARC employs an Actor-Critic method where the LLM Actor generates declarative logic programs along with tests for semantic correctness, while the Automated Reasoning Critic evaluates the code, runs the tests and provides feedback on test failures for iterative refinement. Implemented using Answer Set Programming (ASP), LLM-ARC achieves a new state-of-the-art accuracy of 88.32% on the FOLIO benchmark which tests complex logical reasoning capabilities. Our experiments demonstrate significant improvements over LLM-only baselines, highlighting the importance of logic test generation and iterative self-refinement. We achieve our best result using a fully automated self-supervised training loop where the Actor is trained on end-to-end dialog traces with Critic feedback. We discuss potential enhancements and provide a detailed error analysis, showcasing the robustness and efficacy of LLM-ARC for complex natural language reasoning tasks.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2406.17663
Document Type :
Working Paper