18 results on '"Carole Dubreuil"'
Search Results
2. The PIP Peptide of INFLORESCENCE DEFICIENT IN ABSCISSION Enhances Populus Leaf and Elaeis guineensis Fruit Abscission
- Author
-
Timothy John Tranbarger, Hubert Domonhédo, Michel Cazemajor, Carole Dubreuil, Urs Fischer, and Fabienne Morcillo
- Subjects
organ abscission ,fruit abscission ,leaf abscission ,cell separation ,peptide signalling ,LRR-RLK ,Populus ,oil palm ,abscission zone ,Botany ,QK1-989 - Abstract
The programmed loss of a plant organ is called abscission, which is an important cell separation process that occurs with different organs throughout the life of a plant. The use of floral organ abscission in Arabidopsis thaliana as a model has allowed greater understanding of the complexities of organ abscission, but whether the regulatory pathways are conserved throughout the plant kingdom and for all organ abscission types is unknown. One important pathway that has attracted much attention involves a peptide ligand-receptor signalling system that consists of the secreted peptide IDA (INFLORESCENCE DEFICIENT IN ABSCISSION) and at least two leucine-rich repeat (LRR) receptor-like kinases (RLK), HAESA (HAE) and HAESA-LIKE2 (HSL2). In the current study we examine the bioactive potential of IDA peptides in two different abscission processes, leaf abscission in Populus and ripe fruit abscission in oil palm, and find in both cases treatment with IDA peptides enhances cell separation and abscission of both organ types. Our results provide evidence to suggest that the IDA−HAE−HSL2 pathway is conserved and functions in these phylogenetically divergent dicot and monocot species during both leaf and fruit abscission, respectively.
- Published
- 2019
- Full Text
- View/download PDF
3. β-Aminobutyric Acid Primes an NADPH Oxidase–Dependent Reactive Oxygen Species Production During Grapevine-Triggered Immunity
- Author
-
Carole Dubreuil-Maurizi, Sophie Trouvelot, Patrick Frettinger, Alain Pugin, David Wendehenne, and Benoît Poinssot
- Subjects
Microbiology ,QR1-502 ,Botany ,QK1-989 - Abstract
The molecular mechanisms underlying the process of priming are poorly understood. In the present study, we investigated the early signaling events triggered by β-aminobutyric acid (BABA), a well-known priming-mediated plant resistance inducer. Our results indicate that, in contrast to oligogalacturonides (OG), BABA does not elicit typical defense-related early signaling events nor defense-gene expression in grapevine. However, in OG-elicited cells pretreated with BABA, production of reactive oxygen species (ROS) and expression of the respiratory-burst oxidase homolog RbohD gene were primed. In response to the causal agent of downy mildew Plasmopara viticola, a stronger ROS production was specifically observed in BABA-treated leaves. This process was correlated with an increased resistance. The NADPH oxidase inhibitor diphenylene iodonium (DPI) abolished this primed ROS production and reduced the BABA-induced resistance (BABA-IR). These results suggest that priming of an NADPH oxidase–dependent ROS production contributes to BABA-IR in the Vitis-Plasmopara pathosystem.
- Published
- 2010
- Full Text
- View/download PDF
4. The Recovery of Plastid Function Is Required for Optimal Response to Low Temperatures in Arabidopsis.
- Author
-
Peter Kindgren, Carole Dubreuil, and Åsa Strand
- Subjects
Medicine ,Science - Abstract
Cold acclimation is an essential response in higher plants to survive freezing temperatures. Here, we report that two independent mutant alleles of the H-subunit of Mg-chelatase, CHLH, gun5-1 and cch in Arabidopsis are sensitive to low temperatures. Plants were grown in photoperiodic conditions and exposed to low temperatures for short- and long-term periods. Tetrapyrrole biosynthesis was initially significantly inhibited in response to low temperature but recovered in wild type (Col-0), although the tetrapyrrole levels were lower in cold compared to control conditions. The gun5-1 and cch alleles showed an inability to recover chlorophyll biosynthesis in addition to a significant decrease in freezing tolerance. We found that the impaired plastid function in the CHLH mutant plants resulted in compromised de novo protein synthesis at low temperatures. The expression of the transcription factors CBF1-3 was super-induced in gun5-1 and cch mutant alleles but expression levels of their target genes, COR15a, COR47 and COR78 were similar or even lower compared to Col-0. In addition, the protein levels of COR15a were lower in gun5-1 and cch and a general defect in protein synthesis could be seen in the gun5-1 mutant following a 35S labelling experiment performed at low temperature. Taken together, our results demonstrate the importance of a functional chloroplast for the cold acclimation process and further suggest that impaired plastid function could result in inhibition of protein synthesis at low temperature.
- Published
- 2015
- Full Text
- View/download PDF
5. GENOMES UNCOUPLED1 plays a key role during the de-etiolation process in Arabidopsis
- Author
-
Tamara Hernández‐Verdeja, Linda Vuorijoki, Xu Jin, Alexander Vergara, Carole Dubreuil, and Åsa Strand
- Subjects
Physiology ,Arabidopsis Proteins ,greening ,Arabidopsis ,Botany ,Biochemistry and Molecular Biology ,food and beverages ,GUN1 ,Plant Science ,Botanik ,plastid retrograde signalling ,DNA-Binding Proteins ,chloroplast ,Gene Expression Regulation, Plant ,Seedlings ,Etiolation ,transcriptional regulation ,Plastids ,light signalling ,Biokemi och molekylärbiologi - Abstract
One of the most dramatic challenges in the life of a plant occurs when the seedling emerges from the soil and exposure to light triggers expression of genes required for establishment of photosynthesis. This process needs to be tightly regulated, as premature accumulation of light-harvesting proteins and photoreactive Chl precursors causes oxidative damage when the seedling is first exposed to light. Photosynthesis genes are encoded by both nuclear and plastid genomes, and to establish the required level of control, plastid-to-nucleus (retrograde) signalling is necessary to ensure correct gene expression. We herein show that a negative GENOMES UNCOUPLED1 (GUN1)-mediated retrograde signal restricts chloroplast development in darkness and during early light response by regulating the transcription of several critical transcription factors linked to light response, photomorphogenesis, and chloroplast development, and consequently their downstream target genes in Arabidopsis. Thus, the plastids play an essential role during skotomorphogenesis and the early light response, and GUN1 acts as a safeguard during the critical step of seedling emergence from darkness.
- Published
- 2022
6. A fully assembled plastid-encoded RNA polymerase complex detected in etioplasts and proplastids in Arabidopsis
- Author
-
Carole Dubreuil, Manuel Guinea Diaz, Nóra Lehotai, Yan Ji, Yanjun Zan, and Åsa Strand
- Subjects
0106 biological sciences ,0301 basic medicine ,Chloroplasts ,Transcription, Genetic ,Physiology ,education ,Arabidopsis ,Sigma Factor ,Plant Science ,RNA polymerase complex ,Biology ,01 natural sciences ,03 medical and health sciences ,chemistry.chemical_compound ,Sigma factor ,Gene Expression Regulation, Plant ,RNA polymerase ,Gene expression ,Genetics ,Plastids ,Plastid ,Gene ,Polymerase ,Arabidopsis Proteins ,fungi ,food and beverages ,RNA ,Cell Biology ,General Medicine ,DNA-Directed RNA Polymerases ,Cell biology ,030104 developmental biology ,chemistry ,cardiovascular system ,biology.protein ,circulatory and respiratory physiology ,010606 plant biology & botany - Abstract
The plastid-encoded genes of higher plants are transcribed by at least two types of RNA polymerases, the nuclear-encoded RNA polymerase (NEP) and the plastid-encoded RNA polymerase (PEP). In mature photosynthesizing leaves, the vast majority of the genes are transcribed by PEP. However, the regulatory mechanisms controlling plastid transcription during early light response is unclear. Chloroplast development is suggested to be associated with a shift in the usage of the primary RNA polymerase from NEP to PEP as the expression of the plastid-encoded photosynthesis genes is induced upon light exposure. Assembly of the PEP complex has been suggested as a rate-limiting step for full activation of plastid-encoded photosynthesis gene expression. However, two sigma factor mutants, sig2 and sig6, with reduced PEP activity, showed significantly lower expression of the plastid-encoded photosynthesis genes already in the dark and during the first hours of light exposure indicating that PEP activity is required for basal expression of plastid-encoded photosynthesis genes in the dark and during early light response. Furthermore, in etioplasts and proplastids a fully assembled PEP complex was revealed on Blue Native PAGE. Our results indicate that a full assembly of the PEP complex is possible in the dark and that PEP drives basal transcriptional activity of plastid-encoded photosynthesis genes in the dark. Assembly of the complex is most likely not a rate-limiting step for full activation of plastid-encoded photosynthesis gene expression which is rather achieved either by the abundance of the PEP complex or by some posttranslational regulation of the individual PEP components.
- Published
- 2020
7. Establishment of Photosynthesis through Chloroplast Development Is Controlled by Two Distinct Regulatory Phases
- Author
-
Wolfgang P. Schröder, Juan de Dios Barajas-López, Johannes Hanson, Ian Small, Andreas Grönlund, Thomas Dobrenel, Åsa Strand, Timothy Hewitt Hewitt, Sandra K. Tanz, Edouard Pesquet, Xu Jin, and Carole Dubreuil
- Subjects
0106 biological sciences ,0301 basic medicine ,Chloroplasts ,Nuclear gene ,Physiology ,Research Articles - Focus Issue ,Arabidopsis ,Light-Harvesting Protein Complexes ,Plant Science ,Photosynthesis ,Zea mays ,01 natural sciences ,Genome ,Cell Line ,03 medical and health sciences ,chloroplast ,Gene Expression Regulation, Plant ,Plant Cells ,Botany ,Genetics ,Arabidopsis thaliana ,Plastids ,Plastid ,Feedback, Physiological ,photosynthesis ,biology ,Arabidopsis Proteins ,ta1183 ,food and beverages ,Cell Differentiation ,biology.organism_classification ,Cell biology ,Plant Leaves ,Chloroplast ,030104 developmental biology ,light ,signaling ,Biogenesis ,010606 plant biology & botany - Abstract
Chloroplasts develop from undifferentiated proplastids present in meristematic tissue. Thus, chloroplast biogenesis is closely connected to leaf development, which restricts our ability to study the process of chloroplast biogenesis per se. As a consequence, we know relatively little about the regulatory mechanisms behind the establishment of the photosynthetic reactions and how the activities of the two genomes involved are coordinated during chloroplast development. We developed a single cell-based experimental system from Arabidopsis (Arabidopsis thaliana) with high temporal resolution allowing for investigations of the transition from proplastids to functional chloroplasts. Using this unique cell line, we could show that the establishment of photosynthesis is dependent on a regulatory mechanism involving two distinct phases. The first phase is triggered by rapid light-induced changes in gene expression and the metabolome. The second phase is dependent on the activation of the chloroplast and generates massive changes in the nuclear gene expression required for the transition to photosynthetically functional chloroplasts. The second phase also is associated with a spatial transition of the chloroplasts from clusters around the nucleus to the final position at the cell cortex. Thus, the establishment of photosynthesis is a two-phase process with a clear checkpoint associated with the second regulatory phase allowing coordination of the activities of the nuclear and plastid genomes.
- Published
- 2017
- Full Text
- View/download PDF
8. The PIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION enhances Populus leaf and Elaeis guineensis fruit abscission
- Author
-
Michel Cazemajor, Hubert Domonhedo, Timothy John Tranbarger, Carole Dubreuil, Urs Fischer, and Fabienne Morcillo
- Subjects
0106 biological sciences ,0301 basic medicine ,Abscission ,F60 - Physiologie et biochimie végétale ,Peptide ,F62 - Physiologie végétale - Croissance et développement ,Plant Science ,Elaeis guineensis ,01 natural sciences ,organ abscission ,oil palm ,03 medical and health sciences ,lcsh:Botany ,LRR-RLK ,Arabidopsis thaliana ,leaf abscission ,Ecology, Evolution, Behavior and Systematics ,chemistry.chemical_classification ,abscission zone ,fruit abscission ,Ecology ,biology ,Kinase ,Communication ,fungi ,food and beverages ,Feuille ,biology.organism_classification ,Floral organ abscission ,Cell biology ,lcsh:QK1-989 ,030104 developmental biology ,Populus ,Inflorescence ,chemistry ,Fruit abscission ,peptide signalling ,Fruit ,cell separation ,010606 plant biology & botany - Abstract
The programmed loss of a plant organ is called abscission, which is an important cell separation process that occurs with different organs throughout the life of a plant. The use of floral organ abscission in Arabidopsis thaliana as a model has allowed greater understanding of the complexities of organ abscission, but whether the regulatory pathways are conserved throughout the plant kingdom and for all organ abscission types is unknown. One important pathway that has attracted much attention involves a peptide ligand-receptor signalling system that consists of the secreted peptide IDA (INFLORESCENCE DEFICIENT IN ABSCISSION) and at least two leucine-rich repeat (LRR) receptor-like kinases (RLK), HAESA (HAE) and HAESA-LIKE2 (HSL2). In the current study we examine the bioactive potential of IDA peptides in two different abscission processes, leaf abscission in Populus and ripe fruit abscission in oil palm, and find in both cases treatment with IDA peptides enhances cell separation and abscission of both organ types. Our results provide evidence to suggest that the IDA−HAE−HSL2 pathway is conserved and functions in these phylogenetically divergent dicot and monocot species during both leaf and fruit abscission, respectively.
- Published
- 2019
9. Redox regulation of PEP activity during seedling establishment in Arabidopsis thaliana
- Author
-
Åsa Strand, Tim S. Crawford, Manuel Guinea Diaz, Tamara Hernández-Verdeja, Dmitry Kremnev, and Carole Dubreuil
- Subjects
0106 biological sciences ,0301 basic medicine ,Transcription, Genetic ,Science ,education ,Arabidopsis ,General Physics and Astronomy ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Article ,Annan biologi ,Electron Transport ,03 medical and health sciences ,chemistry.chemical_compound ,Chloroplast Thioredoxins ,Transcription (biology) ,RNA polymerase ,Gene expression ,Other Biological Topics ,Amino Acid Sequence ,Plastids ,Plastid ,Photosynthesis ,lcsh:Science ,Gene ,Multidisciplinary ,Chemistry ,Arabidopsis Proteins ,fungi ,Intracellular Signaling Peptides and Proteins ,food and beverages ,General Chemistry ,Cell biology ,Chloroplast ,Complementation ,030104 developmental biology ,Seedlings ,cardiovascular system ,Phosphorylation ,lcsh:Q ,010606 plant biology & botany ,circulatory and respiratory physiology - Abstract
Activation of the plastid-encoded RNA polymerase is tightly controlled and involves a network of phosphorylation and, as yet unidentified, thiol-mediated events. Here, we characterize PLASTID REDOX INSENSITIVE2, a redox-regulated protein required for full PEP-driven transcription. PRIN2 dimers can be reduced into the active monomeric form by thioredoxins through reduction of a disulfide bond. Exposure to light increases the ratio between the monomeric and dimeric forms of PRIN2. Complementation of prin2-2 with different PRIN2 protein variants demonstrates that the monomer is required for light-activated PEP-dependent transcription and that expression of the nuclear-encoded photosynthesis genes is linked to the activity of PEP. Activation of PEP during chloroplast development likely is the source of a retrograde signal that promotes nuclear LHCB expression. Thus, regulation of PRIN2 is the thiol-mediated mechanism required for full PEP activity, with PRIN2 monomerization via reduction by TRXs providing a mechanistic link between photosynthetic electron transport and activation of photosynthetic gene expression., The plastid-encoded RNA polymerase PEP is regulated according to plastid redox state. Here, the authors show that the redox-regulated PRIN2 protein is reduced to monomeric form in a thiol-dependent manner in response to light and that PRIN2 monomers are required for PEP activity and retrograde signaling.
- Published
- 2018
10. A quantitative model of the phytochrome-PIF light signalling initiating chloroplast development
- Author
-
Åsa Strand, Carole Dubreuil, Yan Ji, and Andreas Grönlund
- Subjects
0301 basic medicine ,Nuclear gene ,Chloroplasts ,Arabidopsis ,lcsh:Medicine ,Models, Biological ,Article ,03 medical and health sciences ,Sigma factor ,Phytochrome B ,Basic Helix-Loop-Helix Transcription Factors ,Plastid ,lcsh:Science ,Gene ,Multidisciplinary ,Phytochrome ,biology ,Arabidopsis Proteins ,lcsh:R ,Botany ,food and beverages ,Promoter ,Botanik ,biology.organism_classification ,Molecular biology ,Cell biology ,Chloroplast ,030104 developmental biology ,lcsh:Q ,Utvecklingsbiologi ,Single-Cell Analysis ,Developmental Biology ,Signal Transduction - Abstract
The components required for photosynthesis are encoded in two separate genomes, the nuclear and the plastid. To address how synchronization of the two genomes involved can be attained in early light-signalling during chloroplast development we have formulated and experimentally tested a mathematical model simulating light sensing and the following signalling response. The model includes phytochrome B (PhyB), the phytochrome interacting factor 3 (PIF3) and putative regulatory targets of PIF3. Closed expressions of the phyB and PIF3 concentrations after light exposure are derived, which capture the relevant timescales in the response of genes regulated by PIF3. Sequence analysis demonstrated that the promoters of the nuclear genes encoding sigma factors (SIGs) and polymerase-associated proteins (PAPs) required for expression of plastid encoded genes, contain the cis-elements for binding of PIF3. The model suggests a direct link between light inputs via PhyB-PIF3 to the plastid transcription machinery and control over the expression of photosynthesis components both in the nucleus and in the plastids. Using a pluripotent Arabidopsis cell culture in which chloroplasts develop from undifferentiated proplastids following exposure to light, we could experimentally verify that the expression of SIGs and PAPs in response to light follow the calculated expression of a PhyB-PIF3 regulated gene.
- Published
- 2017
11. A Local Auxin Gradient Regulates Root Cap Self-Renewal and Size Homeostasis
- Author
-
Urs Fischer, Xu Jin, Andreas Grönlund, and Carole Dubreuil
- Subjects
0301 basic medicine ,Cell division ,Cellular differentiation ,Meristem ,Arabidopsis ,Compensatory growth (organ) ,Biology ,Self renewal ,Plant Roots ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,Plant Growth Regulators ,Auxin ,Homeostasis ,Root cap ,chemistry.chemical_classification ,Indoleacetic Acids ,Biological Transport ,Organ Size ,biology.organism_classification ,Cell biology ,030104 developmental biology ,chemistry ,Stem cell ,General Agricultural and Biological Sciences ,Developmental biology ,Cell Division ,Morphogen - Abstract
Organ size homeostasis, compensatory growth to replace lost tissue, requires constant measurement of size and adjustment of growth rates. Morphogen gradients control organ and tissue sizes by regulating stem cell activity, cell differentiation, and removal in animals [1-3]. In plants, control of tissue size is of specific importance in root caps to protect the growing root tip from mechanical damage [4]. New root cap tissue is formed by the columella and lateral root-cap-epidermal stem cells, whose activity is regulated through non-dividing niche-like cells, the quiescent center (QC) [4, 5]. Columella daughter cells in contact with the QC retain the potency to divide, while derivatives oriented toward the mature cap undergo differentiation. The outermost columella layers are sequentially separated from the root body, involving remodeling of cell walls [6]. Factors regulating the balance between cell division, elongation, and separation to keep root cap size constant are currently unknown [4]. Here, we report that stem cell proliferation induced cell separation at the periphery of the root cap, resulting in tissue size homeostasis. An auxin response gradient with a maximum in the QC and a minimum in the detaching layer was established prior to the onset of cell separation. In agreement with a mathematical model, tissue size was positively regulated by the amount of auxin released from the source. Auxin transporters localized non-polarly to plasma membranes of the inner cap, partly isolating separating layers from the auxin source. Together, these results are in support of an auxin gradient measuring and regulating tissue size.
- Published
- 2018
- Full Text
- View/download PDF
12. β-Aminobutyric Acid Primes an NADPH Oxidase–Dependent Reactive Oxygen Species Production During Grapevine-Triggered Immunity
- Author
-
David Wendehenne, Sophie Trouvelot, Carole Dubreuil-Maurizi, Patrick Frettinger, Alain Pugin, Benoît Poinssot, Plante - microbe - environnement : biochimie, biologie cellulaire et écologie (PMEBBCE), and Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-Institut National de la Recherche Agronomique (INRA)-Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD)
- Subjects
NADPH OXIDASE-DEPENDENT ,Phytophthora ,0106 biological sciences ,ACIDE β-AMINOBUTYRIQUE ,Physiology ,Arabidopsis ,Biology ,01 natural sciences ,Aminobutyric acid ,03 medical and health sciences ,Immunity ,Tobacco ,Gene expression ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Vitis ,DNA Primers ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,Reactive oxygen species ,Oxidase test ,NADPH oxidase ,Reverse Transcriptase Polymerase Chain Reaction ,Aminobutyrates ,NADPH Oxidases ,Hydrogen Peroxide ,General Medicine ,Kinetics ,Enzyme ,Biochemistry ,chemistry ,BABA ,biology.protein ,Calcium ,Signal transduction ,Reactive Oxygen Species ,Agronomy and Crop Science ,RESISTANCE ,010606 plant biology & botany - Abstract
International audience; The molecular mechanisms underlying the process of priming are poorly understood. In the present study, we investigated the early signaling events triggered by β-aminobutyric acid (BABA), a well-known priming-mediated plant resistance inducer. Our results indicate that, in contrast to oligogalacturonides (OG), BABA does not elicit typical defense-related early signaling events nor defense-gene expression in grapevine. However, in OG-elicited cells pretreated with BABA, production of reactive oxygen species (ROS) and expression of the respiratory-burst oxidase homolog RbohD gene were primed. In response to the causal agent of downy mildew Plasmopara viticola, a stronger ROS production was specifically observed in BABA-treated leaves. This process was correlated with an increased resistance. The NADPH oxidase inhibitor diphenylene iodonium (DPI) abolished this primed ROS production and reduced the BABA-induced resistance (BABA-IR). These results suggest that priming of an NADPH oxidase–dependent ROS production contributes to BABA-IR in the Vitis-Plasmopara pathosystem.
- Published
- 2010
- Full Text
- View/download PDF
13. The Recovery of Plastid Function Is Required for Optimal Response to Low Temperatures in Arabidopsis
- Author
-
Åsa Strand, Peter Kindgren, and Carole Dubreuil
- Subjects
Transcription, Genetic ,Acclimatization ,Mutant ,Arabidopsis ,lcsh:Medicine ,Protein biosynthesis ,Cold acclimation ,Genetics ,Plastids ,Plastid ,Genetik ,lcsh:Science ,Alleles ,Multidisciplinary ,biology ,Arabidopsis Proteins ,Cold-Shock Response ,lcsh:R ,Wild type ,biology.organism_classification ,Cell biology ,Cold shock response ,Chloroplast ,Cold Temperature ,Protein Biosynthesis ,Mutation ,lcsh:Q ,Research Article - Abstract
Cold acclimation is an essential response in higher plants to survive freezing temperatures. Here, we report that two independent mutant alleles of the H-subunit of Mg-chelatase, CHLH, gun5-1 and cch in Arabidopsis are sensitive to low temperatures. Plants were grown in photoperiodic conditions and exposed to low temperatures for short- and long-term periods. Tetrapyrrole biosynthesis was initially significantly inhibited in response to low temperature but recovered in wild type (Col-0), although the tetrapyrrole levels were lower in cold compared to control conditions. The gun5-1 and cch alleles showed an inability to recover chlorophyll biosynthesis in addition to a significant decrease in freezing tolerance. We found that the impaired plastid function in the CHLH mutant plants resulted in compromised de novo protein synthesis at low temperatures. The expression of the transcription factors CBF1-3 was super-induced in gun5-1 and cch mutant alleles but expression levels of their target genes, COR15a, COR47 and COR78 were similar or even lower compared to Col-0. In addition, the protein levels of COR15a were lower in gun5-1 and cch and a general defect in protein synthesis could be seen in the gun5-1 mutant following a 35S labelling experiment performed at low temperature. Taken together, our results demonstrate the importance of a functional chloroplast for the cold acclimation process and further suggest that impaired plastid function could result in inhibition of protein synthesis at low temperature.
- Published
- 2015
14. Role of glutathione in plant signaling under biotic stress
- Author
-
Benoît Poinssot, Carole Dubreuil-Maurizi, Agroécologie [Dijon], and Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement
- Subjects
Hypersensitive response ,Phytophthora ,Mini Review ,redox environment ,[SDV]Life Sciences [q-bio] ,Arabidopsis ,Plant Science ,Biology ,medicine.disease_cause ,Genes, Plant ,phytophthora brassicae ,chemistry.chemical_compound ,pad2-1 mutant ,Gene Expression Regulation, Plant ,Stress, Physiological ,medicine ,Arabidopsis thaliana ,Plant Immunity ,glutathione ,Plant Diseases ,chemistry.chemical_classification ,Reactive oxygen species ,Arabidopsis Proteins ,Phytoalexin ,arabidopsis thaliana ,Glutathione ,Biotic stress ,biology.organism_classification ,defence response ,Oxidative Stress ,Biochemistry ,chemistry ,Mutation ,[SDE]Environmental Sciences ,Oxidative stress ,Signal Transduction - Abstract
International audience; Glutathione (GSH) is a non-protein thiol compound which has been repeatedly reported to play an important role in plant responses during biotic stresses. However, our knowledge of glutathione-related molecular mechanisms underlying plant defense responses still remains limited. We first discovered that the Arabidopsis thaliana phytoalexin deficient 2-1 (pad2-1) mutant was linked to glutathione deficiency since the mutation was identified in the GSH1 gene encoding the first enzyme of glutathione biosynthesis: Glutamate Cysteine Ligase (GCL). Interestingly, this glutathione-deficient mutant pad2-1 also displays a high susceptibility to a wide range of invaders. We recently reported that the glutathione deficiency in pad2-1 is directly related to a low content of GCL protein. In parallel, we highlighted that the altered redox potential in pad2-1 upregulates the oxidative-stress marker genes GR1, GSTF6 and RbohD during infection with the hemibiotrophic oomycete Phytophthora brassicae. Moreover, the impairment of early signaling events such as plasma membrane depolarization, production of nitric oxide and reactive oxygen species also correlates with the reduced hypersensitive response (HR) observed during P. brassicae infection. Concerning the impaired salicylic acid (SA)-dependent pathway in pad2-1, our results indicated that transcripts of IsoChorismate Synthase1 (ICS1, a main enzyme of SA biosynthesis) do not accumulate in response to pathogen. In this review, we integrate previous knowledge and recent discoveries about pad2-1 to better understand the involvement of glutathione in the pad2-1 pleiotropic phenotype observed during biotic stresses
- Published
- 2012
- Full Text
- View/download PDF
15. Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression and hypersensitive response
- Author
-
Lorelise Branciard, David Wendehenne, Felix Mauch, Carole Dubreuil-Maurizi, Benoît Poinssot, Andreas J. Meyer, Laurent Marty, Patrick Frettinger, Jan Víteček, Plante - microbe - environnement : biochimie, biologie cellulaire et écologie (PMEBBCE), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-Institut National de la Recherche Agronomique (INRA)-Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD), Rheinische Friedrich-Wilhelms-Universität Bonn, Czech Academy of Sciences [Prague] (CAS), Heidelberg Institute for Plant Science, Heidelberg University, Département de Biologie, Université de Fribourg, French Ministere de l'Enseignement Superieur et de la Recherche, Conseil Regional de Bourgogne, Bureau Interprofessionnel des Vins de Bourgogne, Agence Nationale de la Recherche Genoplante (GENO-148G), and Comite National des Interprofessions des Vins d'Appellation d'Origine
- Subjects
0106 biological sciences ,Physiology ,Mutant ,Glutathione reductase ,Arabidopsis ,Oligosaccharides ,Plant Science ,01 natural sciences ,chemistry.chemical_compound ,Anti-Infective Agents ,Gene Expression Regulation, Plant ,Camalexin ,Arabidopsis thaliana ,0303 health sciences ,Glutathione ,Biochemistry ,Host-Pathogen Interactions ,Disease Susceptibility ,Salicylic Acid ,Oxidation-Reduction ,Signal Transduction ,Hypersensitive response ,Phytophthora ,disease resistance ,Biology ,Nitric Oxide ,respiratory burst oxidase homolog d ,[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics ,03 medical and health sciences ,Stress, Physiological ,Genetics ,Plants Interacting with Other Organisms ,glutathione reductase ,030304 developmental biology ,Plant Diseases ,Arabidopsis Proteins ,Cell Membrane ,Wild type ,Hydrogen Peroxide ,biology.organism_classification ,Molecular biology ,Plant Leaves ,Oxidative Stress ,chemistry ,Mutation ,glutathione-s-transferase ,Isochorismate synthase ,biology.protein ,glutamate-cysteine ligase ,Reactive Oxygen Species ,010606 plant biology & botany - Abstract
L'article original est publié par The American Society of Plant Biologists; International audience; The Arabidopsis (Arabidopsis thaliana) phytoalexin-deficient mutant pad2-1 displays enhanced susceptibility to a broad range of pathogens and herbivorous insects that correlates with deficiencies in the production of camalexin, indole glucosinolates, and salicylic acid (SA). The pad2-1 mutation is localized in the GLUTAMATE-CYSTEINE LIGASE (GCL) gene encoding the first enzyme of glutathione biosynthesis. While pad2-1 glutathione deficiency is not caused by a decrease in GCL transcripts, analysis of GCL protein level revealed that pad2-1 plants contained only 48% of the wild-type protein amount. In contrast to the wild type, the oxidized form of GCL was dominant in pad2-1, suggesting a distinct redox environment. This finding was corroborated by the expression of GRX1-roGFP2, showing that the cytosolic glutathione redox potential was significantly less negative in pad2-1. Analysis of oxidative stress-related gene expression showed a higher transcript accumulation in pad2-1 of GLUTATHIONE REDUCTASE, GLUTATHIONE-S-TRANSFERASE, and RESPIRATORY BURST OXIDASE HOMOLOG D in response to the oomycete Phytophthora brassicae. Interestingly, oligogalacturonide elicitation in pad2-1 revealed a lower plasma membrane depolarization that was found to act upstream of an impaired hydrogen peroxide production. This impaired hydrogen peroxide production was also observed during pathogen infection and correlated with a reduced hypersensitive response in pad2-1. In addition, a lack of pathogen-triggered expression of the ISOCHORISMATE SYNTHASE1 gene, coding for the SA-biosynthetic enzyme isochorismate synthase, was identified as the cause of the SA deficiency in pad2-1. Together, our results indicate that the pad2-1 mutation is related to a decrease in GCL protein and that the resulting glutathione deficiency negatively affects important processes of disease resistance.
- Published
- 2011
- Full Text
- View/download PDF
16. Current view of nitric oxide-responsive genes in plants
- Author
-
Carole Dubreuil-Maurizi, Sylvain Jeandroz, Sumaira Rasul, David Wendehenne, Jeremy Astier, Izabela Wawer, Angélique Besson-Bard, Plante - microbe - environnement : biochimie, biologie cellulaire et écologie ( PMEBBCE ), Etablissement National d'Enseignement Supérieur Agronomique de Dijon ( ENESAD ) -Institut National de la Recherche Agronomique ( INRA ) -Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), institute of biochemistry and biophysics, Polska Akademia Nauk ( PAN ), AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Plante - microbe - environnement : biochimie, biologie cellulaire et écologie (PMEBBCE), Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD)-Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-Institut National de la Recherche Agronomique (INRA)-Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD)
- Subjects
0106 biological sciences ,Plant Science ,Biology ,01 natural sciences ,Nitric oxide synthase-like enzyme ,Transcriptomic analysis ,Transcriptome ,03 medical and health sciences ,L-NAME ,[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/Agronomy ,Transcription (biology) ,Complementary DNA ,Arabidopsis ,Genetics ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Gene ,Transcription factor ,030304 developmental biology ,0303 health sciences ,Biotic and abiotic stresses ,Nitric oxide-responsive genes ,Promoter ,Nitric oxide ,General Medicine ,biology.organism_classification ,Stress biotique ,DNA microarray ,Agronomy and Crop Science ,010606 plant biology & botany - Abstract
International audience; Significant efforts have been directed towards the identification of genes differentially regulated through nitric oxide (NO)-dependent processes. These efforts comprise the use of medium- and large-scale transcriptomic analyses including microarray and cDNA-amplification fragment length polymorphism (AFLP) approaches. Numerous putative NO-responsive genes have been identified in plant tissues and cell suspensions with transcript levels altered by artificially released NO, or endogenously produced. Comparative analysis of the data from such transcriptomic analyses in Arabidopsis reveals that a significant part of these genes encode proteins related to plant adaptive responses to biotic and abiotic stresses. Putative common transcription factor-binding sites in the promoter of NO-regulated genes have been defined. The current challenge remains to validate the interpretations deduced from the transcriptomic analyses and to understand the molecular mechanisms underlying the NO-dependent modulation of the genes of interest. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
- Published
- 2009
- Full Text
- View/download PDF
17. Perspectives pour la viticulture du décryptage du génome de la vigne (Partie 3/3: Maîtrise de la maturation et gestion des ressources génétiques de la vigne)
- Author
-
Anne-Francoise Adam-Blondon, Roberto Bacilieri, Baillieul, F., Jean-Michel Boursiquot, Clement, C., Xavier Daire, Francis Delmotte, Serge Delrot, Carole Dubreuil, Eric Duchêne, Anthony Gauthier, Francis Karst, Thierry Lacombe, Valerie Laucou, Didier Merdinoglu, Mestre, P., Nathalie Ollat, Frederique Pelsy, Jean-Pierre Peros, Benoît Poinssot, Alain Pugin, Patrice Rey, Nancy Terrier, Patrice This, Sophie TROUVELOT, Muriel Viaud, Unité de recherche en génomique végétale (URGV), Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Diversité et adaptation des plantes cultivées (UMR DIAPC), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), UNITE DE RECHERCHE VIGNES ET VINS DE CHAMPAGNE - STRESS ET ENVIRONNEMENT - EA2069 (URVV - SE), Université de Reims Champagne-Ardenne (URCA), Plante - microbe - environnement : biochimie, biologie cellulaire et écologie (PMEBBCE), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-Institut National de la Recherche Agronomique (INRA)-Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD), Unité de recherche Amélioration, Génétique et Physiologie Forestières (AGPF), Institut National de la Recherche Agronomique (INRA), Ecophysiologie et Génomique Fonctionnelle de la Vigne (UMR EGFV), Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1-Université Victor Segalen - Bordeaux 2-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Santé de la vigne et qualité du vin (SVQV), Institut National de la Recherche Agronomique (INRA)-Université Louis Pasteur - Strasbourg I, Unité Mixte de Recherche en Santé Végétale (INRA/ENITA) (UMRSV), Institut National de la Recherche Agronomique (INRA)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut des Sciences de la Vigne et du Vin (ISVV), Sciences Pour l'Oenologie (SPO), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université Montpellier 1 (UM1)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA), BIOlogie et GEstion des Risques en agriculture (BIOGER), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Université Montpellier 1 (UM1)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2), Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD)-Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1 (UB)-Université Victor Segalen - Bordeaux 2-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Unité de recherche Amélioration, Génétique et Physiologie Forestières (URAGPF), Ecophysiologie et Génomique Fonctionnelle de la Vigne, Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1-Bordeaux Sciences Agro [Gradignan], Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Université Victor Segalen - Bordeaux 2, Unité Mixte de Recherche en Santé Végétale (INRA/ENITA) (UMR SAVE), Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut de Recherche pour le Développement (IRD [Nouvelle-Calédonie])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), and AgroParisTech-Institut National de la Recherche Agronomique (INRA)
- Subjects
changement climatique ,GENOME DE LA VIGNE ,maturation ,génome ,[SDV]Life Sciences [q-bio] ,GESTION DES CLONES ,viticulture ,ressource génétique ,fertilité ,vitis vinifera ,[SDE]Environmental Sciences ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,qualité de la vendange ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,vigne - Abstract
National audience; Cet article est le troisième d’une série où nous avons tout d’abord détaillé les outils génomiques maintenant diponibles chez la vigne, puis expliqué comment ils vont contribuer à la recherche de méthodes pour lutter contre les agents pathogènes de la vigne. Nous allons maintenant décrire comment, à notre avis, ils vont nous permettre de contribuer à une adaptation des pratiques viticoles à la problématique du changement climatique mais également à gérer et exploiter plus efficacement les ressources génétiques.
- Published
- 2009
18. Perspectives pour la viticulture du décryptage du génome de la vigne (Partie 2/3: Economiser les intrants)
- Author
-
Anne-Francoise Adam-Blondon, Roberto Bacilieri, Baillieul, F., Jean-Michel Boursiquot, Clement, C., Xavier Daire, François Delmotte, Serge Delrot, Carole Dubreuil, Eric Duchêne, Anthony Gauthier, Francis Karst, Thierry Lacombe, Valerie Laucou, Didier Merdinoglu, Mestre, P., Nathalie Ollat, Frederique Pelsy, Jean-Pierre Peros, Benoît Poinssot, Alain Pugin, Patrice Rey, Nancy Terrier, Patrice This, Sophie TROUVELOT, Muriel Viaud, Unité de recherche en génomique végétale (URGV), Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Diversité et adaptation des plantes cultivées (UMR DIAPC), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2), UNITE DE RECHERCHE VIGNES ET VINS DE CHAMPAGNE - STRESS ET ENVIRONNEMENT - EA2069 (URVV - SE), Université de Reims Champagne-Ardenne (URCA), Plante - microbe - environnement : biochimie, biologie cellulaire et écologie (PMEBBCE), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-Institut National de la Recherche Agronomique (INRA)-Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD), Unité Mixte de Recherche en Santé Végétale (INRA/ENITA) (UMR SAVE), Institut National de la Recherche Agronomique (INRA)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne, Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1-Bordeaux Sciences Agro [Gradignan], Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Université Victor Segalen - Bordeaux 2, Santé de la vigne et qualité du vin (SVQV), Institut National de la Recherche Agronomique (INRA)-Université Louis Pasteur - Strasbourg I, Sciences Pour l'Oenologie (SPO), Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut de Recherche pour le Développement (IRD [Nouvelle-Calédonie])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), BIOlogie et GEstion des Risques en agriculture (BIOGER), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Unité Mixte de Recherche en Santé Végétale (INRA/ENITA) (UMRSV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (UMR EGFV), Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1-Université Victor Segalen - Bordeaux 2-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université Montpellier 1 (UM1)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Université Montpellier 1 (UM1)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD)-Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), and Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1 (UB)-Université Victor Segalen - Bordeaux 2-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)
- Subjects
résistance aux maladies ,MALADIE DE LA VIGNE ,GENOME DE LA VIGNE ,génome ,[SDV]Life Sciences [q-bio] ,élicitation ,viticulture ,GENETIQUE ,écosystème ,intrant ,[SDE]Environmental Sciences ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,défense naturelle ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,vigne ,botrytis cinerea ,agent pathogène - Abstract
National audience; Comme nous l’avons souligné dans le premier article de cette série, le décryptage récent du génome de la vigne ouvre de nouvelles perspectives pour la compréhension du fonctionnement de la vigne dans son environnement et par conséquent pour travailler sur les caractères d’intérêt pour la viticulture et l’Œnologie. Des rencontres ont donc été organisées entre chercheurs des organismes de recherche (Inra, Cnrs, universités), ingénieurs/chercheurs de l’Institut Français de la Vigne et du Vin (recherche développement) et les membres des interprofessions pour dégager des projets nationaux, tout en veillant à une utilisation optimale de cet outil, lorsqu’elle est pertinente. Le Cniv s’est ainsi engagé à co-financer dans ce cadre une partie des projets soumis à l’agence nationale pour la recherche (Anr) à partir de 2008.
- Published
- 2009
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.