1. Multi-Layer Cycle Benchmarking for high-accuracy error characterization
- Author
-
Calzona, Alessio, Papič, Miha, Figueroa-Romero, Pedro, and Auer, Adrian
- Subjects
Quantum Physics - Abstract
Accurate noise characterization is essential for reliable quantum computation. Effective Pauli noise models have emerged as powerful tools, offering detailed description of the error processes with a manageable number of parameters, which guarantees the scalability of the characterization procedure. However, a fundamental limitation in the learnability of Pauli fidelities impedes full high-accuracy characterization of both general and effective Pauli noise, thereby restricting e.g., the performance of noise-aware error mitigation techniques. We introduce Multi-Layer Cycle Benchmarking (MLCB), an enhanced characterization protocol that improves the learnability associated with effective Pauli noise models by jointly analyzing multiple layers of Clifford gates. We show a simple experimental implementation and demonstrate that, in realistic scenarios, MLCB can reduce unlearnable noise degrees of freedom by up to $75\%$, improving the accuracy of sparse Pauli-Lindblad noise models and boosting the performance of error mitigation techniques like probabilistic error cancellation. Our results highlight MLCB as a scalable, practical tool for precise noise characterization and improved quantum computation., Comment: 22 pages, 9 figures
- Published
- 2024