1. Symmetry reduction, integrability and reconstruction in k-symplectic field theory
- Author
-
Bua, L., Mestdag, T., and Salgado, M.
- Subjects
Mathematical Physics ,Mathematics - Differential Geometry ,37J15, 53Z05, 70S05, 70S10 - Abstract
We investigate the reduction process of a k-symplectic field theory whose Lagrangian is invariant under a symmetry group. We give explicit coordinate expressions of the resulting reduced partial differential equations, the so-called Lagrange-Poincare field equations. We discuss two issues about reconstructing a solution from a given solution of the reduced equations. The first one is an interpretation of the integrability conditions, in terms of the curvatures of some connections. The second includes the introduction of the concept of a k-connection to provide a reconstruction method. We show that an invariant Lagrangian, under suitable regularity conditions, defines a `mechanical' k-connection., Comment: 37 pages
- Published
- 2015
- Full Text
- View/download PDF