Back to Search Start Over

Symmetry reduction, integrability and reconstruction in k-symplectic field theory

Authors :
Bua, L.
Mestdag, T.
Salgado, M.
Source :
Journal of Geometric Mechanics 7 (2015) 395-429
Publication Year :
2015

Abstract

We investigate the reduction process of a k-symplectic field theory whose Lagrangian is invariant under a symmetry group. We give explicit coordinate expressions of the resulting reduced partial differential equations, the so-called Lagrange-Poincare field equations. We discuss two issues about reconstructing a solution from a given solution of the reduced equations. The first one is an interpretation of the integrability conditions, in terms of the curvatures of some connections. The second includes the introduction of the concept of a k-connection to provide a reconstruction method. We show that an invariant Lagrangian, under suitable regularity conditions, defines a `mechanical' k-connection.<br />Comment: 37 pages

Details

Database :
arXiv
Journal :
Journal of Geometric Mechanics 7 (2015) 395-429
Publication Type :
Report
Accession number :
edsarx.1504.06462
Document Type :
Working Paper
Full Text :
https://doi.org/10.3934/jgm.2015.7.395