40 results on '"Bosdet, I."'
Search Results
2. HPR129 Real-World Policy Effects of Implementing Multi-Gene Panel Sequencing for Advanced Cancers in British Columbia, Canada: An Interrupted Time Series Analysis
- Author
-
Weymann, D, Krebs, E, Pollard, S, Bosdet, I, Yip, S, Karsan, A, Ho, C, Lim, H, Loree, JM, Laskin, J, Law, M, and Regier, DA
- Published
- 2024
- Full Text
- View/download PDF
3. P85.05 MET Exon 14 Skipping Mutation Positive Non-Small Cell Lung Cancer: A Population-Based Cohort
- Author
-
Wong, S., primary, Alex, D., additional, Bosdet, I., additional, Hughesman, C., additional, Karsan, A., additional, Yip, S., additional, and Ho, C., additional
- Published
- 2021
- Full Text
- View/download PDF
4. Estimating deep molecular responses in chronic myelogenous leukemia: a Bayesian approach
- Author
-
Young, S S, Tucker, T, Bosdet, I, and Karsan, A
- Published
- 2016
- Full Text
- View/download PDF
5. Suppressed recombination around the MXC3 locus, a major gene for resistance to poplar leaf rust
- Author
-
Stirling, B., Newcombe, G., Vrebalov, J., Bosdet, I., and Bradshaw Jr., H.D.
- Published
- 2001
- Full Text
- View/download PDF
6. P1.01-40 EGFR ctDNA Detection: The Impact of Site of Progression and Burden of Progressive Disease
- Author
-
Pender, A., primary, Hughesman, C., additional, Law, E., additional, Kristanti, A., additional, Mcneil, K., additional, Tucker, T., additional, Bosdet, I., additional, Young, S., additional, Laskin, J., additional, Karsan, A., additional, Yip, S., additional, and Ho, C., additional
- Published
- 2019
- Full Text
- View/download PDF
7. P003 Implementation of High Throughput Parallel Sequencing in a Diagnostic Setting: Multiplexed Amplicon Sequencing of the Breast Cancer Genes BRCA1 and 2
- Author
-
Zogopoulos G, Tomi Pastinen, Sivanandan K, Vaca F, Kinoshita T, Johannes B, Leguis E, Jansen-van der Weide M, Learn L, Godlewski D, Ed Saunders, Montserrat Rué, Vaisman A, de Bock G, Ángel Segura, Sabbaghian N, Mohammad Amin Kerachian, Pelletier S, Metcalfe K, Lilge L, Stockle E, Cheng S, Burger C, Woike A, Michelle Guy, Ragone A, Y. J. Bignon, Bronkhorst Y, Patricia N. Tonin, Lima M, Mieke Kriege, Karsan A, Zweemer R, Prady C, Beattie M, Panchal S, Kathleen Claes, van Zon P, Diane Provencher, Ummels A, Kang I, Shumak R, Arcusa Â, Yosr Hamdi, Alonso Mc, Dolman L, Houssami N, Olivier Delattre, Yannick Bidet, Claude Houdayer, Mercedes Durán, Ganschow P, Isabel Chirivella, Domingo S, Rebsamen M, Giustina Simone, Orland Diez, Chapman J, An tSaoir C, Jeanna McCuaig, Blayney J, Bosdet I, Treacy R, Esther Darder, Ando J, Luc Dehaspe, García-Casado Z, Duffy J, Harkin D, Z Kote-Jarai, Kasamatsu T, Ulf Kristoffersson, Membrez, Priston M, Noreau-Heisz D, Trivedi A, Begoña Graña, Ghadirian P, Ashuryk O, Consol López, Wenzel L, Vogel R, Joseph G, Poll A, Kennedy R, Patton S, Pérez C, Mónica Cornet, Panighetti A, Cassart P, Burke K, Mes-Masson A, Llacuachaqui M, Marc Tischkowitz, Wong N, Arcand S, Kotsopoulos J, Meschino W, Hall A, Marles S, Docking R, Haroun I, Marie Plante, Rachel Laframboise, Daniel Sinnett, Luce J, Sekiguchi I, Edenir Inêz Palmero, de Winter J, Christopher J. Lord, Hamel N, Pruski-Clark J, Lee D, Rusnak A, Carson N, Marta Santamariña, Knoppers B, Oakhill K, Bruce R. Rosen, Pierre O. Chappuis, Bruce Poppe, Stanislaw C, Catts Z, Brood M, van der Wall E, Yip C, Christine Walsh, Hoodfar E, Pressman A, Andrulis I, Alicia Barroso, D. Leongamornlert, Gillian Mitchell, Akira Hirasawa, Shen Z, Sameer Parpia, Horgan M, van Echtelt J, Chun K, Lubinski J, Rebecca Sutphen, Terespolsky D, Richard D, McDyer F, Floquet A, Lambo R, Bathurst L, Brown G, Kidd M, Nicolas Sevenet, Mourits M, Vencken P, Tatiana Popova, Garcia N, Armel S, van Amstel H, Valentini A, Ellen Warner, Hofland N, Hanna D, Kim J, Osann K, Enmore M, Loranger K, Sulivan I, J. Oliveira, Meijers H, Jansen R, Edmundo Carvalho Mauad, Kirkpatrick R, Danilo V Viana, Ian G. Campbell, Mil S, E J Sawyer, J. Balmaña, Samra Turajlic, Graham G, Alonso C, Inanc Birol, Sinclair F, van Tuil M, Pascual Bolufer, Micheli R, Andrew R. Green, Junyent N, Whittaker J, Monnerat C, Rhéaume J, Livingston D, Chan S, L. Ramadan, Lee R, Katarzyna Durda, De Leeneer K, Grados C, Côté C, Kyle B. Matchett, Robert Winqvist, Bonner D, Brunella Pilato, Mohd Taib N, Judy Garber, Kleiderman E, Murakami S, Sharifi N, Kimberley Hill, Desbiens C, Robert Royer, Jasperson K, Hsieh S, De Summa S, Dominique Stoppa-Lyonnet, de Lima J, Stuart McIntosh, Shakeri M, Wendy Kohlmann, Albert-Green A, de Hullu J, Pasick R, Avard D, Pathania S, van der Groep P, Laura Fachal, Bruno Zeitouni, Susan M. Domchek, Davey S, Richard Marais, Powell C, Hans J. J. P. Gille, Greenberg R, Kamata H, Cina, Gaarenstroom K, Lakhal Chaieb M, Kavanagh L, Gaelle Benais-Pont, Sun P, Jansen L, Matthew Parker, Barjhoux L, Russ H, Simon J. Furney, Willems A, Robb L, David E. Goldgar, Young S, Natalia Campacci, Mark G. Thomas, Doug Easton, Klugman S, Barrault M, Calvo N, Adriana C. Flora, Littell R, Narod S, Fragoso, N. Bosch, Finch A, Paul M. Wilkerson, Teo S, Tomasz Huzarski, Manuel Salto-Tellez, Moseley M, Davis S, Olga M. Sinilnikova, Iturbe A, Joan Brunet, Tierney M, Tsai E, Navarro de Souza A, Leclerc M, Lorenzo Manti, Gutiérrez-Enríquez S, Milewski B, Simon S. McDade, Kaplan C, Buckley N, Eva Esteban-Cardeñosa, Richter S, Shimizu C, Li J, Elena Castro, Iwanka Kozarewa, Harley I, Atocha Romero, Carlos E. Andrade, Carole Verny-Pierre, Barouk E, Vian D, Montserrat Baiget, Chan J, Sandra Bonache, Andrew Y Shuen, van der Merwe N, Kaklewski K, Mohar A, Tamura C, Heale E, Rooyadeh M, van Asperen C, Gemma Llort, Alan Mackay, Denroche R, Seelaus C, Zbuk K, McCluggage W, van der Luijt R, Maaike P.G. Vreeswijk, Edelweiss M, Crossan G, Arseneau J, Ambus I, Verheul H, Rodrigo Augusto Depieri Michelli, Juul T. Wijnen, Gross-Lester J, Britta Weigelt, Pedro Pérez-Segura, Richard A. Moore, Cornelissen C, Larouche G, McAlpine J, Daniel Nava Rodrigues, Trim L, Furnival J, Elser C, Muszyńka M, Adriana Lasa, Tuya Pal, Greuter. M, Ng K, Dorval M, Bresee C, Reimnitz G, Gaëtan MacGrogan, Perry Maxwell, Barnadas A, Hwang E, Powell B, Knapke S, Griskevicius. L, Alvarez R, Mester J, Anne-Bine Skytte, Eladio Velasco, Vidal S, Australie K, Leunen K, Ben-Yishay M, Van Houdt J, Phuah S, Amy E Taylor, Pinto R, Fonseca T, Champine M, Gammon A, Hollema H, Menko F, Feng B, David Olmos, Chong G, Tomasz Byrski, Patrick J. Morrison, Gregoire J, André Lopes Carvalho, Don B. Plewes, Rabeneck L, Carrol J, Alan Ashworth, Terlinge A, A Jakubowska, Odette Mariani, Setareh Moghadasi, Reitsma W, Rothenmund H, Herrera L, Anna Tenés, Angel Izquierdo, Asunción Torres, Stawicka M, Goh C, Hirst M, Drummond J, Osorio A, Ostrovsky R, Jeffrey N. Weitzel, Gareth W. Irwin, Fehniger J, Sugano K, Spriggs E, Dęniak T, Volenik A, Thorne H, Piccinin C, Amie Blanco, Jinno H, Robert A. Holt, Stephen B. Fox, Julia J. Gorski, Gilpin C, Herschorn S, Vega A, E. Page, Hamet P, McKenna D, Fabrice Bonnet, Yoshida T, Kienan I. Savage, Petzel S, Elizabeth Bancroft, Schneider S, Warwick L, Stewart S, William D. Foulkes, Colizza K, Bell K, Demsky R, Malgorzata Tymrakiewicz, Caldés T, Fons G, Bowen D, Côté S, Clouston D, Kitagawa Y, Gordon Glendon, Jenny Lester, Kinney A, Nelson E, Silke Hollants, Macrae L, Cajal T, Andrew J. Mungall, Ferrell B, Creighton B, Bressler L, Uy P, Makishima K, Haffaf Z, Ramūnas Janavičius, Einstein G, Zakalik D, Chiarelli A, Cantu D, Croce S, Kalloger S, Lin F, Ian O. Ellis, Benedito Mauro Rossi, R A Wilkinson, Mulligan J, Murphy J, Vadaparampil S, Smith E, Slangen B, Loiselle C, Iqbal J, Palma L, Cooper K, Jorge S. Reis-Filho, Chen. L, Quinten Waisfisz, Haneda E, Banks P, Vermeulen K, Visser B, Montalbán G, McCabe N, Honeyford J, Naseri S, Ng J, Ali A, Sandrine Viala, Mensa I, Kamarainen O, Guerra C, Mazzola E, David A. Schwartz, Marjanka K. Schmidt, Simon R, Fergus J. Couch, Margreet G. E. M. Ausems, Anne Vincent-Salomon, Olinski R, Zewald R, Moreno R, Semple J, McPherson J, Lamers E, Kharbanda A, Kessler L, Biemans D, Au A, Bordeleau L, Jean Feunteun, Mar Infante, Mullan P, Rudaitis, Molenda A, Rachael Natrajan, Pawar, Boman B, Kok T, Andrew A. Brown, Geller M, Monfared N, Bart J, Murata P, Crawford N, Butterfield Y, Bargalló J, Katherine L. Tucker, Cook-Wiens G, Rhodes A, Elodie Manié, Rubio E, Oram L, Shandiz F, Hayden R, Crawford B, Parmigiani G, Harkin P, Müller C, Grant M, Maryou B. Lambros, Thong M, Grzegorz Sukiennicki, Wouts J, Haddock P, Ramon y Cajal T, Kenneth C. Anderson, Michel Longy, Batiste W, Carroll J, Matte C, Hojyo T, Zhao Y, Caroline Seynaeve, Wai P, Simard J, Hurley K, Bolton D, Karlan B, Javier Benítez, Miriam Masas, Tołczko-Grabarek A, de Dueñas E, Geneviève Michils, Moncoutier, Nancy Uhrhammer, MacDonald D, Keyserlingk J, Osher D, Gilks C, Christopher T. Elliott, Scharf L, Gabram-Mendola S, Grondin K, Dohany L, van Diest P, Joris Vermeesch, Jan C. Oosterwijk, M’Baïlara K, DePuit M, Jacek Gronwald, Stefania Tommasi, de la Hoya M, Bouchard K, Black L, Lui M, Soucy P, Rosalind A. Eeles, Gert Matthijs, Graham T, Andrea Eisen, Bacha O, Alvaro N.A. Monteiro, Yoon S, Caron T, Smith D, Marc-Henri Stern, Hampson E, Kurz R, Gaasbeek W, Mundt E, Angela Velasco, Quinn J, Jocelyne Chiquette, Marquez T, Adam B. Murphy, Bakker J, Neus Gadea, Anita Grigoriadis, Aoki D, Dean S, Looi L, Paradiso A, Agostina Stradella, K. Govindasami, Lovell N, Eva Tomiak, Siesling S, Belanger M, Feilotter H, Knight J, Emmanuel Barillot, Huang M, Raquel Andrés, Kang P, Somerman C, Gackowski D, Rimel B, Nakamura S, McClellan K, Barrros E, Henriette Roed Nielsen, Rui Manuel Reis, Greening S, Ayme A, Carmen Guillen, de Vries E, and Katarzyna Jaworska
- Subjects
Oncology ,Education and Communication ,medicine.medical_specialty ,endocrine system diseases ,medicine.diagnostic_test ,business.industry ,Psycho-Oncology ,medicine.disease ,Meeting Abstracts ,Transcriptome ,Basic Research ,Clinical Management ,Germline mutation ,Breast cancer ,Applied Research ,Internal medicine ,Mutation (genetic algorithm) ,medicine ,Genetic Counselling ,Human genome ,skin and connective tissue diseases ,business ,Ovarian cancer ,Comparative genomic hybridization ,Fluorescence in situ hybridization - Abstract
Background: Germline mutation screening of BRCA1 and BRCA2 genes is performed in suspected familial breast cancer cases, but a causative mutation is found in only 30% of patients. The development of additional methods to identify good candidates for BRCA1 and BRCA2 analysis would therefore increase the efficacy of diagnostic mutation screening. With this in mind, we developed a study to determine molecular signatures of BRCA1—or BRCA2—mutated breast cancers. Materials and Methods: Array-cgh (comparative genomic hybridization) and transcriptomic analysis were performed on a series of 103 familial breast cancers. The series included 7 breast cancers with a BRCA1 mutation and 5 breast cancers with a BRCA2 mutation. The remaining 91 cases were obtained from 73 families selected on the basis of at least 3 affected first-degree relatives or at least 2 affected first-degree relatives with breast cancer at an average age of 45 years. Array-cgh analyses were performed on a 4407 BAC-array (CIT-V8) manufactured by IntegraGen. Transcriptomic analyses were performed using an Affymetrix Human Genome U133 Plus 2.0 chip. Results: Using supervised clustering analyses we identified two transcriptomic signatures: one for BRCA1-mutated breast cancers consisting of 600 probe sets and another for BRCA2-mutated breast cancers also consisting of 600 probes sets. We also defined cgh-array signatures, based on the presence of specific genomic rearrangements, one for BRCA1-mutated breast cancers and one for BRCA2-mutated breast cancers. Conclusions: This study identified molecular signatures of breast cancers with BRCA1 or BRCA2 germline mutations. Genes present in these signatures could be exploited to find new markers for such breast cancers. We also identified specific genomic rearrangements in these breast cancers, which could be screened for in a diagnostic setting using fluorescence in situ hybridization, thus improving patient selection for BRCA1 and BRCA2 molecular genetic analysis.
- Published
- 2009
8. Population Based Evaluation of Chemotherapy Use After First Line Gefitinib in Epidermal Growth Factor Receptor (EGFR) Mutation Positive Advanced Non-Small Cell Lung Cancer (NSCLC)
- Author
-
Mariano, C., primary, Bosdet, I., additional, Ionescu, D., additional, Karsan, A., additional, Sun, S., additional, Murray, N., additional, Melosky, B., additional, Laskin, J., additional, and Ho, C., additional
- Published
- 2012
- Full Text
- View/download PDF
9. A set of BAC clones spanning the human genome.
- Author
-
Krzywinski, M., Bosdet, I., Smailus, D., Chiu, R., Mathewson, C., Wye, N., Barber, S., Brown-John, M., Chan, S., Chand, S., Cloutier, A., Girn, N., Lee, D., Masson, A., Mayo, M., Olson, T., Pandoh, P., Prabhu, A.L., Schoenmakers, E.F.P.M., Tsai, M.Y., Albertson, D., Lam, W.W., Choy, C.O., Osoegawa, K., Zhao, S., Jong, P.J. de, Schein, J., Jones, S., Marra, M.A., Krzywinski, M., Bosdet, I., Smailus, D., Chiu, R., Mathewson, C., Wye, N., Barber, S., Brown-John, M., Chan, S., Chand, S., Cloutier, A., Girn, N., Lee, D., Masson, A., Mayo, M., Olson, T., Pandoh, P., Prabhu, A.L., Schoenmakers, E.F.P.M., Tsai, M.Y., Albertson, D., Lam, W.W., Choy, C.O., Osoegawa, K., Zhao, S., Jong, P.J. de, Schein, J., Jones, S., and Marra, M.A.
- Abstract
Contains fulltext : 57492.pdf (publisher's version ) (Open Access), Using the human bacterial artificial chromosome (BAC) fingerprint-based physical map, genome sequence assembly and BAC end sequences, we have generated a fingerprint-validated set of 32 855 BAC clones spanning the human genome. The clone set provides coverage for at least 98% of the human fingerprint map, 99% of the current assembled sequence and has an effective resolving power of 79 kb. We have made the clone set publicly available, anticipating that it will generally facilitate FISH or array-CGH-based identification and characterization of chromosomal alterations relevant to disease.
- Published
- 2004
10. Population-based pan-Canadian EGFR-mutation testing program.
- Author
-
Tsao, M. S., primary, Ionescu, D., additional, Chong, G., additional, Magliocco, A. M., additional, Soulieres, D., additional, Hwang, D., additional, Young, S., additional, Wei, C., additional, Bosdet, I., additional, Karsan, A., additional, Spatz, A., additional, and Kamel-Reid, S., additional
- Published
- 2011
- Full Text
- View/download PDF
11. Relationship of thyroid transcription factor 1 to EGFR status in non-small-cell lung cancer.
- Author
-
Sheffield, B. S., Bosdet, I. E., Ali, R. H., Young, S. S., McNeil, B. K., Wong, C., Dastur, K., Karsan, A., and Ionescu, D. N.
- Subjects
- *
THYROID cancer , *TRANSCRIPTION factors , *EPIDERMAL growth factor receptor genetics , *GENETIC mutation , *PHYSIOLOGY , *GENETICS ,THYROID cancer diagnosis - Abstract
Background Activating mutations of the epidermal growth factor receptor (EGFR) gene are known to drive a proportion of non-small-cell lung cancers. Identification of lung cancers harbouring such mutations can lead to effective treatment using one of the agents that targets and blocks EGFR-mediated signalling. Methods All specimens received at the BC Cancer Agency (Vancouver) for EGFR testing were prospectively identified and catalogued, together with clinical information and EGFR status, over a 14-month period. Results Specimens from 586 patients were received for EGFR testing, and EGFR status was reported for 509 patients. No relationship between specimen type or site of origin and EGFR test failure rate was identified. Concurrent immunohistochemical (IHC) status for thyroid transcription factor 1 (TTF1) was available for 309 patients. The negative predictive value of TTF1-negative status by IHC was 94.2% for predicting negative EGFR status. Conclusions In patients with limited tissue available for testing, a surrogate for EGFR status would aid in timely management. Immunohistochemistry for TTF1 is readily available and correlates highly with EGFR status. In conjunction with genetic assays, TTF1 could be used to optimize an EGFR testing strategy. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
12. PT30 Real-World Cost-Effectiveness of Publicly Reimbursed Multi-Gene Panel Sequencing to Inform Therapeutic Decisions for Advanced Non-Small Cell Lung Cancer in British Columbia, Canada.
- Author
-
Krebs, E, Weymann, D, Ho, C, Bosdet, I, Laskin, J, Lim, H, Yip, S, Karsan, A, Hanna, T, Pollard, S, and Regier, DA
- Published
- 2024
- Full Text
- View/download PDF
13. The Genome of the Sea Urchin Strongylocentrotus purpuratus
- Author
-
Amro Hamdoun, Virginia Brockton, Huyen Dinh, Qiang Tu, Richard O. Hynes, Maria Ina Arnone, Wratko Hlavina, L. Courtney Smith, Mariano A. Loza, David R. Burgess, Matthew P. Hoffman, Florian Raible, Qiu Autumn Yuan, Geoffrey Okwuonu, Mark Y. Tong, Jennifer Hume, Donna Maglott, Manisha Goel, Olivier Fedrigo, Manuel L. Gonzalez-Garay, Celina E. Juliano, Judith Hernandez, Gary M. Wessel, William F. Marzluff, Audrey J. Majeske, Christian Gache, Louise Duloquin, Xingzhi Song, François Lapraz, Fowler J, Alexandre Souvorov, Jared V. Goldstone, Georgia Panopoulou, Sandra Hines, Kyle M. Judkins, Clay Davis, Christine G. Elsik, Paul Kitts, Mariano Loza-Coll, Greg Wray, Taku Hibino, Eric Röttinger, Allison M. Churcher, Annamaria Locascio, Arcady Mushegian, Masashi Kinukawa, Anna Reade, Katherine M. Buckley, I. R. Gibbons, Bert Gold, Aleksandar Milosavljevic, David Epel, Victor D. Vacquier, Ling Ling Pu, Vincenzo Cavalieri, Erin L. Allgood, Lan Zhang, Lynne V. Nazareth, Constantin N. Flytzanis, Ian Bosdet, Yi-Hsien Su, Zeev Pancer, Matthew L. Rowe, Robert C. Angerer, David R. McClay, William H. Klein, Rachel F. Gray, Julian L. Wong, Shunsuke Yaguchi, Robert Bellé, Aaron J. Mackey, Herath Jayantha Gunaratne, Karl Frederik Bergeron, Bruce P. Brandhorst, Greg Murray, Avis H. Cohen, Stephanie Bell, Kristin Tessmar-Raible, Ian K. Townley, Bertrand Cosson, Thomas D. Glenn, Jongmin Nam, Cynthia A. Bradham, Michael Dean, Joseph Chacko, Anthony J. Robertson, Margherita Branno, Valeria Matranga, K. James Durbin, Esther Miranda, Lili Chen, Eran Elhaik, Robert D. Burke, Rita A. Wright, Paola Oliveri, Sandra L. Lee, Gary W. Moy, Alexander E Primus, Shawn S. McCafferty, Cristina Calestani, David A. Garfield, Erica Sodergren, Karen Wilson, Joel Smith, Marco A. Marra, Cynthia Messier, Julia Morales, Kim D. Pruitt, Rachel Thorn, Rachel Gill, John S. Taylor, Mark E. Hahn, Victor Sapojnikov, Meredith Howard-Ashby, Lynne M. Angerer, Maurice R. Elphick, Kathy R. Foltz, Anne Marie Genevière, Justin T. Reese, Blanca E. Galindo, Kim C. Worley, Andrew Leone, Glen Humphrey, Kevin Berney, Olga Ermolaeva, George Miner, David P. Terwilliger, Elly Suk Hen Chow, Lora Lewis, Dan Graur, C. Titus Brown, Gerard Manning, Kevin J. Peterson, Angela Jolivet, Michele K. Anderson, Francesca Rizzo, Ekaterina Voronina, Thierry Lepage, Giorgio Matassi, Antonio Fernandez-Guerra, Mamoru Nomura, Charles A. Whittaker, James R.R. Whittle, James A. Coffman, George M. Weinstock, Mohammed M. Idris, Ashlan M. Musante, Sebastian D. Fugmann, Katherine D. Walton, Sorin Istrail, Shu-Yu Wu, Cerrissa Hamilton, Jonah Cool, Jacqueline E. Schein, Stacey M. Curry, Athula Wikramanayke, Seth Carbonneau, Blair J. Rossetti, Christopher E. Killian, Melissa J. Landrum, Amanda P. Rawson, Jenifer C. Croce, Ryan C. Range, Rahul Satija, John J. Stegeman, Yufeng Shen, Cavit Agca, Terry Gaasterland, Rocky Cheung, Takae Kiyama, Nikki Adams, Jonathan P. Rast, Robert Piotr Olinski, Andrew Cree, Mark Scally, Shuguang Liang, David A. Parker, Rebecca Thomason, Gretchen E. Hofmann, Michelle M. Roux, Ronghui Xu, Robert A. Obar, Enrique Arboleda, Odile Mulner-Lorillon, Shannon Dugan-Rocha, David J. Bottjer, Gabriele Amore, Manoj P. Samanta, Waraporn Tongprasit, Véronique Duboc, La Ronda Jackson, Fred H. Wilt, Viktor Stolc, Anna T. Neill, Michael Raisch, Pei Yun Lee, Jia L. Song, Margaret Morgan, Brian T. Livingston, Sofia Hussain, Zheng Wei, Bryan J. Cole, Tonya F. Severson, Victor V. Solovyev, Finn Hallböök, Donna M. Muzny, Christine A. Byrum, Albert J. Poustka, Xiuqian Mu, Andrew R. Jackson, Shin Heesun, Euan R. Brown, Nansheng Chen, Patrick Cormier, Ralph Haygood, Pedro Martinez, R. Andrew Cameron, D. Wang, Wendy S. Beane, Eric H. Davidson, Christie Kovar, Hemant Kelkar, Charles A. Ettensohn, Sham V. Nair, Robert L. Morris, Stefan C. Materna, Michael C. Thorndyke, Richard A. Gibbs, Dan O Mellott, Department of Physiology and Biophysics, Stony Brook University [The State University of New York] ( SBU ), Astronomy Unit ( AU ), Queen Mary University of London ( QMUL ), Urban and Industrial Air Quality Group, CSIRO Energy Technology, Commonwealth Scientific and Industrial Research Organisation Energy Technology ( CSIRO Energy Technology ), Commonwealth Scientific and Industrial Research Organisation, Center for Polymer Studies ( CPS ), Boston University [Boston] ( BU ), Physics Department [Boston] ( BU-Physics ), Max Planck Institute for Psycholinguistics, Max-Planck-Institut, Department of Biology [Norton], Wheaton College [Norton], Mathematical Institute [Oxford] ( MI ), University of Oxford [Oxford], Centre for the Analysis of Time Series ( CATS ), London School of Economics and Political Science ( LSE ), Thomas Jefferson National Accelerator Facility ( Jefferson Lab ), Thomas Jefferson National Accelerator Facility, Laboratoire d'Energétique et de Mécanique Théorique Appliquée ( LEMTA ), Université de Lorraine ( UL ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Evolution, Génomes et Spéciation ( LEGS ), Centre National de la Recherche Scientifique ( CNRS ), Department of Geology, University of Illinois at Urbana-Champaign [Urbana], Department of Electrical and Computer Engineering [Portland] ( ECE ), Portland State University [Portland] ( PSU ), Saint-Gobain Crystals [USA], SAINT-GOBAIN, Institute for Animal Health ( IAH ), Biotechnology and Biological Sciences Research Council, Center for Agricultural Resources Research, Chinese Academy of Sciences [Changchun Branch] ( CAS ), Ipsen Inc. [Milford] ( Ipsen ), IPSEN, Department of Physics [Berkeley], University of California [Berkeley], Institute for Climate and Atmospheric Science [Leeds] ( ICAS ), University of Leeds, Chung-Ang University ( CAU ), Chung-Ang University [Seoul], Antarctic Climate and Ecosystems Cooperative Research Center ( ACE-CRC ), Institute of Aerodynamics and Fluid Mechanics ( AER ), Technische Universität München [München] ( TUM ), Mer et santé ( MS ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Imperial College London, Radio and Atmospheric Sciences Division, National Physical Laboratory [Teddington] ( NPL ), International Research Institute for Climate and Society ( IRI ), Earth Institute at Columbia University, Columbia University [New York]-Columbia University [New York], Soils Group, The Macaulay Institute, Department of Haematology, University of Cambridge [UK] ( CAM ), School of Biology and Biochemistry, Queen's University, Leslie Hill Institute for Plant Conservation ( PCU ), University of Cape Town, Institute for Microelectronics and Microsystems/ Istituto per la Microelettronica e Microsistemi ( IMM ), Consiglio Nazionale delle Ricerche ( CNR ), Laboratoire d'acoustique de l'université du Mans ( LAUM ), Le Mans Université ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Interactive Systems Labs ( ISL ), Carnegie Mellon University [Pittsburgh] ( CMU ), Dalian Institute of Chemical Physics ( DICP ), Architectures, Languages and Compilers to Harness the End of Moore Years ( ALCHEMY ), Laboratoire de Recherche en Informatique ( LRI ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ) -Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique ( Inria ), Clean Air Task Force ( CATF ), Clean Air Task Force, Space Physics Laboratory, Indian Space Research Organisation ( ISRO ), Centre d'études et de recherches appliquées à la gestion ( CERAG ), Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Microbiology and Immunology, College of Medicine and Health Sciences-Sultan Qaboos University, European Molecular Biology Laboratory [Heidelberg] ( EMBL ), Department of Biostatistics, University of Michigan [Ann Arbor], Department of Radiation Oncology [Michigan] ( Radonc ), Department of Physics and Astronomy [Leicester], University of Leicester, Informatique, Biologie Intégrative et Systèmes Complexes ( IBISC ), Université d'Évry-Val-d'Essonne ( UEVE ) -Centre National de la Recherche Scientifique ( CNRS ), Institut für Meteorologie und Klimaforschung ( IMK ), Karlsruher Institut für Technologie ( KIT ), Physics Department [UNB], University of New Brunswick ( UNB ), Laboratoire Parole et Langage ( LPL ), Centre National de la Recherche Scientifique ( CNRS ) -Aix Marseille Université ( AMU ), Institut des Sciences Chimiques de Rennes ( ISCR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Ecole Nationale Supérieure de Chimie de Rennes-Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Biogéosciences [Dijon] ( BGS ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Bioprojet, Laboratoire de Matériaux à Porosité Contrôlée ( LMPC ), Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Ecole Nationale Supérieure de Chimie de Mulhouse-Centre National de la Recherche Scientifique ( CNRS ), School of Information Engineering [USTB] ( SIE ), University of Science and Technology Beijing [Beijing] ( USTB ), Laboratory for Atmospheric and Space Physics [Boulder] ( LASP ), University of Colorado Boulder [Boulder], Department of Applied Mathematics [Sheffield], University of Sheffield [Sheffield], School of Mathematics and Statistics [Sheffield] ( SoMaS ), Laboratoire de Mécanique de Lille - FRE 3723 ( LML ), Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Centre National de la Recherche Scientifique ( CNRS ), Computer Science Department [UCLA] ( CSD ), University of California at Los Angeles [Los Angeles] ( UCLA ), Développement et évolution ( DE ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Biologie du Développement de Villefranche sur mer ( LBDV ), Laboratoire Pierre Aigrain ( LPA ), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris ( FRDPENS ), Centre National de la Recherche Scientifique ( CNRS ) -École normale supérieure - Paris ( ENS Paris ) -Centre National de la Recherche Scientifique ( CNRS ) -École normale supérieure - Paris ( ENS Paris ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Mathematics and Statistics [Mac Gill], McGill University, Departamento de Botánica [Comahue], Universidad nacional del Comahue, Bioénergétique Cellulaire et Pathologique ( BECP ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Environnements et Paléoenvironnements OCéaniques ( EPOC ), Observatoire aquitain des sciences de l'univers ( OASU ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -École pratique des hautes études ( EPHE ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Jacques Monod ( IJM ), Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratori Nazionali del Sud ( LNS ), National Institute for Nuclear Physics ( INFN ), Departament de Matemàtiques [Barcelona], Universitat Autònoma de Barcelona [Barcelona] ( UAB ), Max-Planck-Institut für Kohlenforschung (coal research), Institute of Oceanology [CAS] ( IOCAS ), National Chiao Tung University ( NCTU ), Department of Hydrology and Water Resources ( HWR ), University of Arizona, Centre for Educational Technology, Environment Department [York], University of York [York, UK], State Key Laboratory of Nuclear Physics and Technology ( SKL-NPT ), Peking University [Beijing], Department of Physics and Astronomy [Iowa City], University of Iowa [Iowa], NASA Ames Research Center ( ARC ), Department of Materials, Digital Language & Knowledge Contents Research Association ( DICORA ), Hankuk University of Foreign Studies, Department of Physics [Coventry], University of Warwick [Coventry], Space Science and Technology Department [Didcot] ( RAL Space ), STFC Rutherford Appleton Laboratory ( RAL ), Science and Technology Facilities Council ( STFC ) -Science and Technology Facilities Council ( STFC ), Institut de biologie et chimie des protéines [Lyon] ( IBCP ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ), H M Nautical Almanac Office [RAL] ( HMNAO ), Rutherford Appleton Laboratory, United Kingdom Met Office [Exeter], University College of London [London] ( UCL ), Department of Pathology and Laboratory Medicine [UCLA], University of California at Los Angeles [Los Angeles] ( UCLA ) -School of Medicine, School of Earth and Environmental Sciences [Seoul] ( SEES ), Seoul National University [Seoul], Department of Chemistry, Seoul Women's University, MicroMachines Centre ( MMC ), Nanyang Technological University [Singapour], Regroupement Québécois sur les Matériaux de Pointe ( RQMP ), École Polytechnique de Montréal ( EPM ) -Université de Sherbrooke [Sherbrooke]-McGill University-Université de Montréal-Fonds Québécois de Recherche sur la Nature et les Technologies ( FQRNT ), Département de Physique [Montréal], Université de Montréal, School of Earth and Environment [Leeds] ( SEE ), Centre for Ecology and Hydrology ( CEH ), Natural Environment Research Council ( NERC ), Norwegian Institute for Water Research ( NIVA ), Norwegian Institute for Water Research, Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Astronomy Unit [London] (AU), Queen Mary University of London (QMUL), Commonwealth Scientific and Industrial Research Organisation Energy Technology (CSIRO Energy Technology), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Department of Biochemistry and Molecular Biology [Houston], The University of Texas Medical School at Houston, Mathematical Institute [Oxford] (MI), University of Oxford, Centre for the Analysis of Time Series (CATS), London School of Economics and Political Science (LSE), Thomas Jefferson National Accelerator Facility (Jefferson Lab), Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA ), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Evolution, Génomes et Spéciation (LEGS), Centre National de la Recherche Scientifique (CNRS), University of Illinois System-University of Illinois System, Department of Electrical and Computer Engineering [Portland] (ECE), Portland State University [Portland] (PSU), Saint-Gobain, Institute for Animal Health (IAH), Biotechnology and Biological Sciences Research Council (BBSRC), Chinese Academy of Sciences [Changchun Branch] (CAS), Ipsen Inc. [Milford] (Ipsen), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Institute for Climate and Atmospheric Science [Leeds] (ICAS), School of Earth and Environment [Leeds] (SEE), University of Leeds-University of Leeds, Chung-Ang University (CAU), Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC), Institute of Aerodynamics and Fluid Mechanics (AER), Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Mer et santé (MS), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), National Physical Laboratory [Teddington] (NPL), International Research Institute for Climate and Society (IRI), Macaulay Institute, University of Cambridge [UK] (CAM), Queen's University [Kingston, Canada], Leslie Hill Institute for Plant Conservation (PCU), Istituto per la Microelettronica e Microsistemi [Catania] (IMM), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), Interactive Systems Labs (ISL), Carnegie Mellon University [Pittsburgh] (CMU), Dalian Institute of Chemical Physics (DICP), Architectures, Languages and Compilers to Harness the End of Moore Years (ALCHEMY), Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Clean Air Task Force (CATF), Indian Space Research Organisation (ISRO), Centre d'études et de recherches appliquées à la gestion (CERAG), Université Pierre Mendès France - Grenoble 2 (UPMF)-Centre National de la Recherche Scientifique (CNRS), Sultan Qaboos University (SQU)-College of Medicine and Health Sciences [Baylor], Baylor University-Baylor University, European Molecular Biology Laboratory [Heidelberg] (EMBL), University of Michigan System-University of Michigan System, Department of Radiation Oncology [Michigan] (Radonc), Informatique, Biologie Intégrative et Systèmes Complexes (IBISC), Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Institute for Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology (KIT), University of New Brunswick (UNB), Laboratoire Parole et Langage (LPL), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Biogéosciences [UMR 6282] (BGS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Matériaux à Porosité Contrôlée (LMPC), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS), School of Information Engineering [USTB] (SIE), University of Science and Technology Beijing [Beijing] (USTB), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], School of Mathematics and Statistics [Sheffield] (SoMaS), Laboratoire de Mécanique de Lille - FRE 3723 (LML), Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS), Computer Science Department [UCLA] (CSD), University of California [Los Angeles] (UCLA), Développement et évolution (DE), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement de Villefranche sur mer (LBDV), Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics and Statistics [Montréal], McGill University = Université McGill [Montréal, Canada], Departamento de Botánica [Bariloche], Centro Regional Universitario Bariloche [Bariloche] (CRUB), Universidad Nacional del Comahue [Neuquén] (UNCOMA)-Universidad Nacional del Comahue [Neuquén] (UNCOMA), Bioénergétique Cellulaire et Pathologique (BECP), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Institut Jacques Monod (IJM (UMR_7592)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratori Nazionali del Sud (LNS), Istituto Nazionale di Fisica Nucleare (INFN), Departament de Matemàtiques [Barcelona] (UAB), Universitat Autònoma de Barcelona (UAB), Max-Planck-Institut für Kohlenforschung (Coal Research), Max-Planck-Gesellschaft, CAS Institute of Oceanology (IOCAS), Chinese Academy of Sciences [Beijing] (CAS), National Chiao Tung University (NCTU), Department of Hydrology and Water Resources (HWR), State Key Laboratory of Nuclear Physics and Technology (SKL-NPT), University of Iowa [Iowa City], NASA Ames Research Center (ARC), Digital Language & Knowledge Contents Research Association (DICORA), Space Science and Technology Department [Didcot] (RAL Space), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Institut de biologie et chimie des protéines [Lyon] (IBCP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), H M Nautical Almanac Office [RAL] (HMNAO), University College of London [London] (UCL), University of California (UC)-University of California (UC)-School of Medicine, School of Earth and Environmental Sciences [Seoul] (SEES), Seoul National University [Seoul] (SNU), MicroMachines Centre (MMC), Regroupement Québécois sur les Matériaux de Pointe (RQMP), École Polytechnique de Montréal (EPM)-Université de Sherbrooke (UdeS)-McGill University = Université McGill [Montréal, Canada]-Université de Montréal (UdeM)-Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT), Université de Montréal (UdeM), Centre for Ecology and Hydrology (CEH), Natural Environment Research Council (NERC), Norwegian Institute for Water Research (NIVA), SEA URCHIN GENOME SEQUENCING CONSORTIUM, SODERGREN E, WEINSTOCK GM, DAVIDSON EH, CAMERON RA, GIBBS RA, ANGERER RC, ANGERER LM, ARNONE MI, BURGESS DR, BURKE RD, COFFMAN JA, DEAN M, ELPHICK MR, ETTENSOHN CA, FOLTZ KR, HAMDOUN A, HYNES RO, KLEIN WH, MARZLUFF W, MCCLAY DR, MORRIS RL, MUSHEGIAN A, RAST JP, SMITH LC, THORNDYKE MC, VACQUIER VD, WESSEL GM, WRAY G, ZHANG L, ELSIK CG, ERMOLAEVA O, HLAVINA W, HOFMANN G, KITTS P, LANDRUM MJ, MACKEY AJ, MAGLOTT D, PANOPOULOU G, POUSTKA AJ, PRUITT K, SAPOJNIKOV V, SONG X, SOUVOROV A, SOLOVYEV V, WEI Z, WHITTAKER CA, WORLEY K, DURBIN KJ, SHEN Y, FEDRIGO O, GARFIELD D, HAYGOOD R, PRIMUS A, SATIJA R, SEVERSON T, GONZALEZ-GARAY ML, JACKSON AR, MILOSAVLJEVIC A, TONG M, KILLIAN CE, LIVINGSTON BT, WILT FH, ADAMS N, BELLE R, CARBONNEAU S, CHEUNG R, CORMIER P, COSSON B, CROCE J, FERNANDEZ-GUERRA A, GENEVIERE AM, GOEL M, KELKAR H, MORALES J, MULNER-LORILLON O, ROBERTSON AJ, GOLDSTONE JV, COLE B, EPEL D, GOLD B, HAHN ME, HOWARD-ASHBY M, SCALLY M, STEGEMAN JJ, ALLGOOD EL, COOL J, JUDKINS KM, MCCAFFERTY SS, MUSANTE AM, OBAR RA, RAWSON AP, ROSSETTI BJ, GIBBONS IR, HOFFMAN MP, LEONE A, ISTRAIL S, MATERNA SC, SAMANTA MP, STOLC V, TONGPRASIT W, TU Q, BERGERON KF, BRANDHORST BP, WHITTLE J, BERNEY K, BOTTJER DJ, CALESTANI C, PETERSON K, CHOW E, YUAN QA, ELHAIK E, GRAUR D, REESE JT, BOSDET I, HEESUN S, MARRA MA, SCHEIN J, ANDERSON MK, BROCKTON V, BUCKLEY KM, COHEN AH, FUGMANN SD, HIBINO T, LOZA-COLL M, MAJESKE AJ, MESSIER C, NAIR SV, PANCER Z, TERWILLIGER DP, AGCA C, ARBOLEDA E, CHEN N, CHURCHER AM, HALLBOOK F, HUMPHREY GW, IDRIS MM, KIYAMA T, LIANG S, MELLOTT D, MU X, MURRAY G, OLINSKI RP, RAIBLE F, ROWE M, TAYLOR JS, TESSMAR-RAIBLE K, WANG D, WILSON KH, YAGUCHI S, GAASTERLAND T, GALINDO BE, GUNARATNE HJ, JULIANO C, KINUKAWA M, MOY GW, NEILL AT, NOMURA M, RAISCH M, READE A, ROUX MM, SONG JL, SU YH, TOWNLEY IK, VORONINA E, WONG JL, AMORE G, BRANNO M, BROWN ER, CAVALIERI, V, DUBOC V, DULOQUIN L, FLYTZANIS C, GACHE C, LAPRAZ F, LEPAGE T, LOCASCIO A, MART, University of California-University of California, Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Consiglio Nazionale delle Ricerche (CNR), Centre National de la Recherche Scientifique (CNRS)-Le Mans Université (UM), Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Biogéosciences [UMR 6282] [Dijon] (BGS), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Ecole Nationale Supérieure de Chimie de Mulhouse-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), University of California-University of California-School of Medicine, Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Sciences et Technologies-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF), University of Manchester Institute of Science and Technology (UMIST), Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Brookhaven National Laboratory [Upton, NY] (BNL), UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE), Baylor College of Medicine (BCM), Baylor University, Laboratoire de Traitement de l'Information Medicale (LaTIM), Université européenne de Bretagne - European University of Brittany (UEB)-Université de Brest (UBO)-Télécom Bretagne-Institut Mines-Télécom [Paris] (IMT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest), Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Duke University [Durham], Instituto Andaluz de Geofísica y Prevención de Desastres Sísmicos [Granada] (IAGPDS), Universidad de Granada (UGR), Laboratoire d'Ingénierie des Matériaux de Bretagne (LIMATB), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO), University of New South Wales [Sydney] (UNSW), Celera Genomics (CRA), Celera Genomics, Paléobiodiversité et paléoenvironnements, Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Roma Tor Vergata [Roma], Unité de recherches forestières (BORDX PIERR UR ), Institut National de la Recherche Agronomique (INRA), Deptartment of Neuroscience, Uppsala University, State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology (NIGPAS-CAS), Chinese Academy of Sciences [Nanjing Branch]-Chinese Academy of Sciences [Nanjing Branch], Institut Méditerranéen d'Ecologie et de Paléoécologie (IMEP), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Avignon Université (AU)-Centre National de la Recherche Scientifique (CNRS), Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China, Université Paris Diderot - Paris 7 (UPD7), Department of Physical and Environmental Sciences [Toronto], University of Toronto at Scarborough, inconnu temporaire UPEMLV, Inconnu, Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Department of Atmospheric Sciences [Seattle], University of Washington [Seattle], National Institute of Advanced Industrial Science and Technology (AIST), Department of Pharmacy, Università degli studi di Genova = University of Genoa (UniGe), Interdisciplinary Arts and Sciences Department, St. Vincent's Hospital, Sydney, Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Electrical Engineering (DEE-POSTECH), Pohang University of Science and Technology (POSTECH), Centre Suisse d'Electronique et de Microtechnique SA [Neuchatel] (CSEM), Centre Suisse d'Electronique et Microtechnique SA (CSEM), Human Genome Sequencing Center [Houston] (HGSC), Brookhaven National Laboratory, Meteorological Service of Canada, 4905 Dufferin Street, Université européenne de Bretagne - European University of Brittany (UEB)-Télécom Bretagne-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)-Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Mines-Télécom [Paris] (IMT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Unité de Recherches Forestières, Department of Physical and Environmental Sciences, University of Toronto [Scarborough, Canada], National Institute for Nuclear Physics (INFN), University of Genoa (UNIGE), Institut de Recherche pour le Développement (IRD)-Institut Universitaire Européen de la Mer (IUEM), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Université de Brest (UBO)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Universidad de Granada = University of Granada (UGR), Laboratoire d'Energétique et de Mécanique Théorique Appliquée (LEMTA ), Technische Universität München [München] (TUM), Queen's University [Kingston], Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Grenoble Alpes (UGA), Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Rennes-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Université de Lille, Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS), Universitat Autònoma de Barcelona [Barcelona] (UAB), École Polytechnique de Montréal (EPM)-Université de Sherbrooke [Sherbrooke]-Université de Montréal [Montréal]-McGill University-Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT), Université de Montréal [Montréal], U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), Université de Bretagne Sud (UBS)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO)-Université de Brest (UBO), Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Paul Cézanne - Aix-Marseille 3-Centre National de la Recherche Scientifique (CNRS)-Avignon Université (AU)-Université de Provence - Aix-Marseille 1, Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Brest (UBO), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Male ,MESH: Signal Transduction ,MESH: Sequence Analysis, DNA ,MESH : Transcription Factors ,MESH : Calcification, Physiologic ,Genome ,MESH : Proteins ,0302 clinical medicine ,MESH : Embryonic Development ,MESH: Gene Expression Regulation, Developmental ,Innate ,MESH: Embryonic Development ,Developmental ,Nervous System Physiological Phenomena ,MESH: Animals ,MESH: Proteins ,[SDV.BDD]Life Sciences [q-bio]/Development Biology ,Complement Activation ,ComputingMilieux_MISCELLANEOUS ,MESH: Evolution, Molecular ,MESH : Strongylocentrotus purpuratus ,Genetics ,0303 health sciences ,MESH: Nervous System Physiological Phenomena ,Multidisciplinary ,biology ,Medicine (all) ,MESH: Immunologic Factors ,Gene Expression Regulation, Developmental ,Genome project ,MESH: Transcription Factors ,MESH : Immunity, Innate ,MESH : Complement Activation ,MESH: Genes ,Bacterial artificial chromosome (BAC)DeuterostomesStrongylocentrotus purpuratusVertebrate innovations ,Echinoderm ,MESH : Nervous System Physiological Phenomena ,embryonic structures ,MESH: Cell Adhesion Molecules ,MESH : Genes ,MESH: Immunity, Innate ,Sequence Analysis ,Signal Transduction ,MESH: Computational Biology ,Genome evolution ,MESH: Complement Activation ,Sequence analysis ,Evolution ,MESH: Strongylocentrotus purpuratus ,MESH : Male ,Embryonic Development ,MESH : Immunologic Factors ,Article ,MESH: Calcification, Physiologic ,Calcification ,MESH : Cell Adhesion Molecules ,Evolution, Molecular ,03 medical and health sciences ,Calcification, Physiologic ,Animals ,Immunologic Factors ,MESH: Genome ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,MESH : Evolution, Molecular ,Physiologic ,Gene ,Strongylocentrotus purpuratus ,[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,030304 developmental biology ,MESH : Signal Transduction ,Bacterial artificial chromosome ,Immunity ,Molecular ,Computational Biology ,Proteins ,Cell Adhesion Molecules ,Genes ,Immunity, Innate ,Transcription Factors ,Sequence Analysis, DNA ,DNA ,biology.organism_classification ,MESH: Male ,Gene Expression Regulation ,MESH : Animals ,MESH : Gene Expression Regulation, Developmental ,MESH : Genome ,030217 neurology & neurosurgery ,MESH : Computational Biology ,MESH : Sequence Analysis, DNA - Abstract
We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus , a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.
- Published
- 2006
14. Real-world cost-effectiveness of panel-based genomic testing to inform therapeutic decisions for metastatic colorectal cancer.
- Author
-
Pataky RE, Weymann D, Bosdet I, Yip S, Bryan S, Sadatsafavi M, Peacock S, and Regier DA
- Subjects
- Humans, Male, Female, Middle Aged, Aged, Proto-Oncogene Proteins p21(ras) genetics, Genetic Testing economics, Quality-Adjusted Life Years, High-Throughput Nucleotide Sequencing, British Columbia, Neoplasm Metastasis, GTP Phosphohydrolases genetics, Mutation, Membrane Proteins genetics, Colorectal Neoplasms drug therapy, Colorectal Neoplasms genetics, Colorectal Neoplasms pathology, Cost-Benefit Analysis, Cetuximab therapeutic use, Cetuximab economics, Panitumumab therapeutic use
- Abstract
Background: Mutations in KRAS and NRAS are associated with a lack of response to cetuximab and panitumumab, two biologics used for third-line therapy of metastatic colorectal cancer (mCRC). In British Columbia, Canada, eligibility for cetuximab or panitumumab was first based on single-gene KRAS testing. OncoPanel, a multi-gene next-generation sequencing panel with both KRAS and NRAS, was introduced in 2016. Our objective was to estimate the real-world cost-effectiveness of OncoPanel versus to single-gene KRAS testing to inform eligibility for cetuximab or panitumumab in mCRC., Methods: Using population-based administrative health data, we identified a cohort of mCRC patients who had received a KRAS or OncoPanel test, and completed prior chemotherapy in 2010-2019. We matched KRAS- and OncoPanel-tested patients (1:1) using genetic matching to balance baseline covariates. Mean and incremental 3-year costs, survival, and quality-adjusted survival were estimated using inverse-probability-of-censoring weighting and bootstrapping. We conducted scenario-based sensitivity analysis for key costs and assumptions., Findings: All OncoPanel-tested cases (n=371) were matched to a KRAS-tested comparator. In the KRAS and OncoPanel groups, respectively, 55·8 % and 41·2 % of patients were potentially eligible for cetuximab or panitumumab based on mutation status. Incremental cost and effectiveness of OncoPanel were $72 (95 % CI: -6387, 6107), -0·004 life-years (95 % CI: -0·119, 0·113), and -0·011 quality-adjusted life-years (95 % CI: -0·094, 0·075). Reductions in systemic therapy costs were offset by increased costs in other resources. Results were moderately sensitive to time horizon and changes in testing or treatment cost., Interpretation: The use of OncoPanel resulted in more precise targeting of cetuximab and panitumumab, but there was no change in incremental cost or quality-adjusted survival. Understanding the balance of costs achieved in practice can provide insight into the effect of future changes in testing policy, test cost, treatment eligibility, or drug prices in this setting., Competing Interests: Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests. DAR’s institution has received research funding for a project from Roche Canada and DAR has received travel funding from Illumina. DW co-directs IMPRINT Research Consulting, has consulted for Birota Economics Group and AstraZeneca Canada, and has received travel funding from Illumina. SY has served on Data Safety Monitoring or Advisory Boards for Amgen, AstraZeneca, Bayer, Janssen, Pfizer, Roche, Servier. REP, MS, SB, SP and IB declare that they have no conflict of interest., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
15. Enhancing clinical genomic accuracy with panelGC: a novel metric and tool for quantifying and monitoring GC biases in hybridization capture panel sequencing.
- Author
-
Cheng X, Goktas MT, Williamson LM, Krzywinski M, Mulder DT, Swanson L, Slind J, Sihvonen J, Chow CR, Carr A, Bosdet I, Tucker T, Young S, Moore R, Mungall KL, Yip S, and Jones SJM
- Subjects
- Humans, Sequence Analysis, DNA methods, Nucleic Acid Hybridization methods, High-Throughput Nucleotide Sequencing methods, High-Throughput Nucleotide Sequencing standards, Genome, Human, Reproducibility of Results, DNA Copy Number Variations, Genomics methods, Base Composition
- Abstract
Accurate assessment of fragment abundance within a genome is crucial in clinical genomics applications such as the analysis of copy number variation (CNV). However, this task is often hindered by biased coverage in regions with varying guanine-cytosine (GC) content. These biases are particularly exacerbated in hybridization capture sequencing due to GC effects on probe hybridization and polymerase chain reaction (PCR) amplification efficiency. Such GC content-associated variations can exert a negative impact on the fidelity of CNV calling within hybridization capture panels. In this report, we present panelGC, a novel metric, to quantify and monitor GC biases in hybridization capture sequencing data. We establish the efficacy of panelGC, demonstrating its proficiency in identifying and flagging potential procedural anomalies, even in situations where instrument and experimental monitoring data may not be readily accessible. Validation using real-world datasets demonstrates that panelGC enhances the quality control and reliability of hybridization capture panel sequencing., (© The Author(s) 2024. Published by Oxford University Press.)
- Published
- 2024
- Full Text
- View/download PDF
16. Real-World Clinical Outcomes for Patients with EGFR and HER2 Exon 20 Insertion-Mutated Non-Small-Cell Lung Cancer.
- Author
-
Li K, Bosdet I, Yip S, Ho C, Laskin J, Melosky B, Wang Y, and Sun S
- Subjects
- Humans, Aged, British Columbia, Exons, ErbB Receptors genetics, Carcinoma, Non-Small-Cell Lung drug therapy, Carcinoma, Non-Small-Cell Lung genetics, Lung Neoplasms drug therapy, Lung Neoplasms genetics
- Abstract
(1) Background: Exon 20 insertion mutations (ex20ins) in EGFR and HER2 are uncommon driver mutations in non-small-cell lung cancer (NSCLC), with a poor prognosis and few targeted therapy options, and there are limited real-world data. Here, we report the clinicopathologic features and outcomes for patients with ex20ins NSCLC across British Columbia, Canada. (2) Methods: NSCLC patients with ex20ins in EGFR or HER2 were identified via tumour testing between 1 January 2016 and 31 December 2021 (n = 7233). Data were collected by chart review. Survival analyses were performed using the Kaplan-Meier method using the log-rank test. (3) Results: A total of 131 patients were identified. The median age was 66. Thirty-three percent of patients had brain metastases. For the EGFR cohort, the median OS was 18.6 months for patients who received any systemic therapy (ST) vs. 2.6 months for patients who did not ( p < 0.001). Median OS was similar for patients treated with ex20ins-specific tyrosine kinase inhibitors (TKIs) vs. other STs (18.6 vs. 15.9 months; p = 0.463). The median first-line PFS was 4.1 vs. 7.4 months for patients treated with a TKI vs. other ST ( p = 0.744). For the HER2 cohort, the median OS was 9.0 months for patients who received any ST vs. 4.9 months for patients who did not ( p = 0.015). The median OS was 23.0 months for patients treated with an ex20ins TKI vs. 5.6 months for patients who were not ( p = 0.019). The median first-line PFS was 5.4 vs. 2.1 months for patients treated with a TKI vs. other ST ( p = 0.343). (4) Conclusions: Overall survival was significantly longer among ex20ins patients who received any systemic therapy vs. those who did not. Overall survival was significantly better among HER2 ex20ins patients who received ex20ins-specific TKIs.
- Published
- 2023
- Full Text
- View/download PDF
17. Defining the heterogeneity of unbalanced structural variation underlying breast cancer susceptibility by nanopore genome sequencing.
- Author
-
Dixon K, Shen Y, O'Neill K, Mungall KL, Chan S, Bilobram S, Zhang W, Bezeau M, Sharma A, Fok A, Mungall AJ, Moore R, Bosdet I, Thibodeau ML, Sun S, Yip S, Schrader KA, and Jones SJM
- Subjects
- Humans, Female, Genetic Predisposition to Disease, Genetic Testing methods, Breast Neoplasms genetics, Breast Neoplasms pathology, Nanopore Sequencing, Nanopores
- Abstract
Germline structural variants (SVs) are challenging to resolve by conventional genetic testing assays. Long-read sequencing has improved the global characterization of SVs, but its sensitivity at cancer susceptibility loci has not been reported. Nanopore long-read genome sequencing was performed for nineteen individuals with pathogenic copy number alterations in BRCA1, BRCA2, CHEK2 and PALB2 identified by prior clinical testing. Fourteen variants, which spanned single exons to whole genes and included a tandem duplication, were accurately represented. Defining the precise breakpoints of SVs in BRCA1 and CHEK2 revealed unforeseen allelic heterogeneity and informed the mechanisms underlying the formation of recurrent deletions. Integrating read-based and statistical phasing further helped define extended haplotypes associated with founder alleles. Long-read sequencing is a sensitive method for characterizing private, recurrent and founder SVs underlying breast cancer susceptibility. Our findings demonstrate the potential for nanopore sequencing as a powerful genetic testing assay in the hereditary cancer setting., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
18. Data sharing to improve concordance in variant interpretation across laboratories: results from the Canadian Open Genetics Repository.
- Author
-
Mighton C, Smith AC, Mayers J, Tomaszewski R, Taylor S, Hume S, Agatep R, Spriggs E, Feilotter HE, Semenuk L, Wong H, Lazo de la Vega L, Marshall CR, Axford MM, Silver T, Charames GS, Di Gioacchino V, Watkins N, Foulkes WD, Clavier M, Hamel N, Chong G, Lamont RE, Parboosingh J, Karsan A, Bosdet I, Young SS, Tucker T, Akbari MR, Speevak MD, Vaags AK, Lebo MS, and Lerner-Ellis J
- Subjects
- Canada, Genetic Predisposition to Disease, Genetic Testing methods, Humans, Information Dissemination methods, Genetic Variation, Laboratories
- Abstract
Background: This study aimed to identify and resolve discordant variant interpretations across clinical molecular genetic laboratories through the Canadian Open Genetics Repository (COGR), an online collaborative effort for variant sharing and interpretation., Methods: Laboratories uploaded variant data to the Franklin Genoox platform. Reports were issued to each laboratory, summarising variants where conflicting classifications with another laboratory were noted. Laboratories could then reassess variants to resolve discordances. Discordance was calculated using a five-tier model (pathogenic (P), likely pathogenic (LP), variant of uncertain significance (VUS), likely benign (LB), benign (B)), a three-tier model (LP/P are positive, VUS are inconclusive, LB/B are negative) and a two-tier model (LP/P are clinically actionable, VUS/LB/B are not). We compared the COGR classifications to automated classifications generated by Franklin., Results: Twelve laboratories submitted classifications for 44 510 unique variants. 2419 variants (5.4%) were classified by two or more laboratories. From baseline to after reassessment, the number of discordant variants decreased from 833 (34.4% of variants reported by two or more laboratories) to 723 (29.9%) based on the five-tier model, 403 (16.7%) to 279 (11.5%) based on the three-tier model and 77 (3.2%) to 37 (1.5%) based on the two-tier model. Compared with the COGR classification, the automated Franklin classifications had 94.5% sensitivity and 96.6% specificity for identifying actionable (P or LP) variants., Conclusions: The COGR provides a standardised mechanism for laboratories to identify discordant variant interpretations and reduce discordance in genetic test result delivery. Such quality assurance programmes are important as genetic testing is implemented more widely in clinical care., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2022
- Full Text
- View/download PDF
19. Use of Treatment-Focused Tumor Sequencing to Screen for Germline Cancer Predisposition.
- Author
-
Lau TTY, May CM, Sefid Dashti ZJ, Swanson L, Starks ER, Parker JDK, Moore RA, Tucker T, Bosdet I, Young SS, Santos JL, Compton K, Heidary N, Hoang L, Schrader KA, Sun S, Kwon JS, Tinker AV, and Karsan A
- Subjects
- Alleles, Cohort Studies, DNA Copy Number Variations, Data Accuracy, Female, Genetic Testing methods, Humans, INDEL Mutation, Polymorphism, Single Nucleotide, Prognosis, Reproducibility of Results, Sensitivity and Specificity, Genetic Predisposition to Disease genetics, Germ Cells, Germ-Line Mutation, High-Throughput Nucleotide Sequencing methods, Neoplasms diagnosis, Neoplasms genetics
- Abstract
Next-generation sequencing assays are capable of identifying cancer patients eligible for targeted therapies and can also detect germline variants associated with increased cancer susceptibility. However, these capabilities have yet to be routinely harmonized in a single assay because of challenges with accurately identifying germline variants from tumor-only data. We have developed the Oncology and Hereditary Cancer Program targeted capture panel, which uses tumor tissue to simultaneously screen for both clinically actionable solid tumor variants and germline variants across 45 genes. Validation using 14 tumor specimens, composed of patient samples and cell lines analyzed in triplicate, demonstrated high coverage with sensitive and specific identification of single-nucleotide variants and small insertions and deletions. Average coverage across all targets remained >2000× in 198 additional patient tumor samples. Analysis of 55 formalin-fixed, paraffin-embedded tumor samples for the detection of known germline variants within a subset of cancer-predisposition genes, including one multiexon deletion, yielded a 100% detection rate, demonstrating that germline variants can be reliably detected in tumor samples using a single panel. Combining targetable somatic and actionable germline variants into a single tumor tissue assay represents a streamlined approach that can inform treatment for patients with advanced cancers as well as identify those with potential germline variants who are eligible for confirmatory testing, but would not otherwise have been identified., (Copyright © 2021 Association for Molecular Pathology and American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
20. Integrating Tumor Sequencing Into Clinical Practice for Patients With Mismatch Repair-Deficient Lynch Syndrome Spectrum Cancers.
- Author
-
Dixon K, Asrat MJ, Bedard AC, Binnington K, Compton K, Cremin C, Heidary N, Lohn Z, Lovick N, McCullum M, Mindlin A, O'Loughlin M, Petersen T, Portigal-Todd C, Scott J, St-Martin G, Thompson J, Turnbull R, Mung SW, Hong Q, Bezeau M, Bosdet I, Tucker T, Young S, Yip S, Aubertin G, Blood KA, Nuk J, Sun S, and Schrader KA
- Subjects
- Colorectal Neoplasms, Hereditary Nonpolyposis diagnosis, DNA Methylation, Epithelial Cell Adhesion Molecule genetics, Female, Humans, Male, Microsatellite Instability, Middle Aged, MutL Protein Homolog 1 genetics, Colorectal Neoplasms, Hereditary Nonpolyposis genetics, DNA Mismatch Repair, Germ-Line Mutation
- Abstract
Introduction: Uninformative germline genetic testing presents a challenge to clinical management for patients suspected to have Lynch syndrome, a cancer predisposition syndrome caused by germline variants in the mismatch repair (MMR) genes or EPCAM., Methods: Among a consecutive series of MMR-deficient Lynch syndrome spectrum cancers identified through immunohistochemistry-based tumor screening, we investigated the clinical utility of tumor sequencing for the molecular diagnosis and management of suspected Lynch syndrome families. MLH1-deficient colorectal cancers were prescreened for BRAF V600E before referral for genetic counseling. Microsatellite instability, MLH1 promoter hypermethylation, and somatic and germline genetic variants in the MMR genes were assessed according to an established clinical protocol., Results: Eighty-four individuals with primarily colorectal (62%) and endometrial (31%) cancers received tumor-normal sequencing as part of routine clinical genetic assessment. Overall, 27% received a molecular diagnosis of Lynch syndrome. Most of the MLH1-deficient tumors were more likely of sporadic origin, mediated by MLH1 promoter hypermethylation in 54% and double somatic genetic alterations in MLH1 (17%). MSH2-deficient, MSH6-deficient, and/or PMS2-deficient tumors could be attributed to pathogenic germline variants in 37% and double somatic events in 28%. Notably, tumor sequencing could explain 49% of cases without causal germline variants, somatic MLH1 promoter hypermethylation, or somatic variants in BRAF., Discussion: Our findings support the integration of tumor sequencing into current Lynch syndrome screening programs to improve clinical management for individuals whose germline testing is uninformative., (Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology.)
- Published
- 2021
- Full Text
- View/download PDF
21. Assessing Limit of Detection in Clinical Sequencing.
- Author
-
Starks ER, Swanson L, Docking TR, Bosdet I, Munro S, Moore RA, and Karsan A
- Subjects
- Alleles, DNA genetics, DNA isolation & purification, Humans, Limit of Detection, Mutation, Polymorphism, Single Nucleotide, Reproducibility of Results, Sensitivity and Specificity, Genomics methods, High-Throughput Nucleotide Sequencing methods, Models, Statistical, Neoplasms genetics, Polymerase Chain Reaction methods
- Abstract
Clinical reporting of solid tumor sequencing requires reliable assessment of the accuracy and reproducibility of each assay. Somatic mutation variant allele fractions may be below 10% in many samples due to sample heterogeneity, tumor clonality, and/or sample degradation in fixatives such as formalin. The toolkits available to the clinical sequencing community for correlating assay design parameters with assay sensitivity remain limited, and large-scale empirical assessments are often relied upon due to the lack of clear theoretical grounding. To address this uncertainty, a theoretical model was developed for predicting the expected variant calling sensitivity for a given library complexity and sequencing depth. Binomial models were found to be appropriate when assay sensitivity was only limited by library complexity or sequencing depth, but functional scaling for library complexity was necessary when both library complexity and sequencing depth were co-limiting. This model was empirically validated with sequencing experiments by using a series of DNA input amounts and sequencing depths. Based on these findings, a workflow is proposed for determining the limiting factors to sensitivity in different assay designs, and the formulas for these scenarios are presented. The approach described here provides designers of clinical assays with the methods to theoretically predict assay design outcomes a priori, potentially reducing burden in clinical tumor assay design and validation efforts., (Copyright © 2021. Published by Elsevier Inc.)
- Published
- 2021
- Full Text
- View/download PDF
22. MET exon 14 skipping mutation positive non-small cell lung cancer: Response to systemic therapy.
- Author
-
Wong SK, Alex D, Bosdet I, Hughesman C, Karsan A, Yip S, and Ho C
- Subjects
- Exons, Humans, Mutation, Protein Kinase Inhibitors therapeutic use, Proto-Oncogene Proteins c-met genetics, Retrospective Studies, Carcinoma, Non-Small-Cell Lung drug therapy, Carcinoma, Non-Small-Cell Lung genetics, Lung Neoplasms drug therapy, Lung Neoplasms genetics
- Abstract
Objectives: MET exon 14 skipping is a potentially targetable molecular alteration. The goals of this study were to identify patients treated in British Columbia with MET exon 14 skipping to understand prevalence, biology and response to treatment, and to identify molecular signatures that may predict for response or resistance to targeted MET therapy in the setting of advanced disease., Materials and Methods: A retrospective review was completed of patients found to have MET exon 14 skipping alterations between January 2016-September 2019. Information was collected on baseline characteristics, response to systemic treatments, and outcomes., Results: Out of 1934 advanced, non-squamous and never-smoking squamous NSCLC patients tested, 41 patients were found to have MET exon 14 skipping (2.1 %). MET alteration types: 2% CBL binding-domain mutations, 34 % poly-pyrimidine tract deletions, 63 % splice donor mutations or deletions. The most common co-mutation was TP53 (22 %). Thirty-three patients received systemic therapy. Physician-assessed disease control was 68 % among 19 evaluable patients treated with crizotinib, 80 % among 10 evaluable patients treated with platinum-based chemotherapy, and 70 % among 10 evaluable patients treated with immunotherapy. Median time to treatment discontinuation was 3.0, 2.8, and 2.4 months, respectively. Median overall survival for metastatic patients treated with any systemic therapy was 15.4 months. In this small cohort, there were no clear correlations between molecular aberrations and response, time to treatment discontinuation, or survival for crizotinib, chemotherapy, and immunotherapy., Conclusion: The prevalence of MET exon 14 skipping in a North American population was 2.1 %. Unlike other targetable mutations, patients were older and more commonly current or former smokers. Patients with MET exon 14 skipping alteration demonstrate disease control with crizotinib, platinum-based chemotherapy and immunotherapy. Co-mutations with TP53 were commonly noted, but correlation between co-mutations and efficacy of therapy were not identified in this cohort., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
23. EGFR circulating tumour DNA testing: identification of predictors of ctDNA detection and implications for survival outcomes.
- Author
-
Pender A, Hughesman C, Law E, Kristanti A, McNeil K, Wong S, Tucker T, Bosdet I, Young S, Laskin J, Karsan A, Yip S, and Ho C
- Abstract
Background: EGFR T790M testing is the standard of care for activating EGFR mutation (EGFRm) non-small cell lung cancer (NSCLC) progressing on 1st/2nd generation TKIs to select patients for osimertinib. Despite sensitive assays, detection of circulating tumour deoxyribonucleic acid (ctDNA) is variable and influenced by clinical factors. The number and location of sites of progressive disease at time of testing were reviewed to explore the effect on EGFR ctDNA detection. The prognostic value of EGFR ctDNA detection on survival outcomes was assessed., Methods: Following extraction of cell-free DNA from plasma using the QIAamp Circulating Nucleic Acid Kit, custom droplet digital polymerase chair reaction (ddPCR) assays were used to assess EGFR ctDNA using the Bio-Rad QX200 system. The ddPCR assay has a limit of detection of ≤0.15% variant allele fraction. Baseline characteristics and imaging reports at time of EGFR ctDNA testing were reviewed retrospectively for a 1 year period., Results: The study included 177 patients who had an EGFR ctDNA test. Liver (aOR 3.13) or bone (aOR 2.76) progression or 3-5 sites of progression (aOR 2.22) were predictive of EGFR ctDNA detection. The median OS from first ctDNA test after multiple testing iterations was 12.3 m undetectable EGFR ctDNA, 7.6 m for original EGFR mutation only and 24.1 m with T790M (P=0.001)., Conclusions: Patients with liver or bone progression and 3-5 progressing sites are more likely to have informative EGFR ctDNA testing. Detection of EGFR ctDNA is a negative prognostic indicator in the absence of a T790M resistance mutation, potentially reflecting the disease burden in the absence of targeted therapy options., Competing Interests: Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/tlcr-9-581). AP reports personal fees from Bristol-Myers Squibb, Guardant Health, grants from Roche Canada during the conduct of the study. CH reports other from AstraZeneca outside the submitted work. TT reports grants from Astra Zeneca outside the submitted work. JL reports grants from Roche, AstraZeneca, personal fees from Roche, Pfizer, Takeda outside the submitted work. SY reports personal fees from Amgen, Bayer, Novartis, Roche outside the submitted work. CH reports grants from Astra Zeneca during the conduct of the study; grants and personal fees from Astra Zeneca, Eisai, personal fees and other from Boehringer Ingelheim, Roche, personal fees from BMS, Lilly, Merck, Bayer, Novartis outside the submitted work. The other authors have no conflicts of interest to declare., (2020 Translational Lung Cancer Research. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
24. Integration of Whole-Genome Sequencing With Circulating Tumor DNA Analysis Captures Clonal Evolution and Tumor Heterogeneity in Non-V600 BRAF Mutant Colorectal Cancer.
- Author
-
Mendis S, Alcaide M, Topham JT, Johnson B, Morin RD, Chu J, Bosdet I, Kopetz S, Karsan A, Gill S, Laskin J, Jones SJM, Marra MA, Schaeffer DF, Renouf DJ, and Loree JM
- Subjects
- Adult, Antineoplastic Combined Chemotherapy Protocols therapeutic use, Biomarkers, Tumor blood, Biopsy, Circulating Tumor DNA blood, Clonal Evolution, Colorectal Neoplasms blood, Colorectal Neoplasms drug therapy, Colorectal Neoplasms pathology, ErbB Receptors antagonists & inhibitors, Genetic Heterogeneity, Humans, Liver pathology, Liver Neoplasms diagnosis, Liver Neoplasms drug therapy, Liver Neoplasms secondary, Male, Mutation, Whole Genome Sequencing, Biomarkers, Tumor genetics, Circulating Tumor DNA genetics, Colorectal Neoplasms genetics, Liver Neoplasms genetics, Proto-Oncogene Proteins B-raf genetics
- Published
- 2020
- Full Text
- View/download PDF
25. Establishing a Framework for the Clinical Translation of Germline Findings in Precision Oncology.
- Author
-
Dixon K, Young S, Shen Y, Thibodeau ML, Fok A, Pleasance E, Zhao E, Jones M, Aubert G, Armstrong L, Virani A, Regier D, Gelmon K, Renouf D, Chia S, Bosdet I, Rassekh SR, Deyell RJ, Yip S, Fisic A, Titmuss E, Abadi S, Jones SJM, Sun S, Karsan A, Marra M, Laskin J, Lim H, and Schrader KA
- Abstract
Inherited genetic variation has important implications for cancer screening, early diagnosis, and disease prognosis. A role for germline variation has also been described in shaping the molecular landscape, immune response, microenvironment, and treatment response of individual tumors. However, there is a lack of consensus on the handling and analysis of germline information that extends beyond known or suspected cancer susceptibility in large-scale cancer genomics initiatives. As part of the Personalized OncoGenomics program in British Columbia, we performed whole-genome and transcriptome sequencing in paired tumor and normal tissues from advanced cancer patients to characterize the molecular tumor landscape and identify putative targets for therapy. Overall, our experience supports a multidisciplinary and integrative approach to germline data management. This includes a need for broader definitions and standardized recommendations regarding primary and secondary germline findings in precision oncology. Here, we propose a framework for identifying, evaluating, and returning germline variants of potential clinical significance that may have indications for health management beyond cancer risk reduction or prevention in patients and their families., (© The Author(s) 2020. Published by Oxford University Press.)
- Published
- 2020
- Full Text
- View/download PDF
26. Sample Tracking Using Unique Sequence Controls.
- Author
-
Moore RA, Zeng T, Docking TR, Bosdet I, Butterfield YS, Munro S, Li I, Swanson L, Starks ER, Tse K, Mungall AJ, Holt RA, and Karsan A
- Subjects
- Computational Biology, DNA Contamination, Databases, Nucleic Acid, Gene Library, Humans, Reference Standards, Reproducibility of Results, Sequence Analysis, DNA, High-Throughput Nucleotide Sequencing methods, High-Throughput Nucleotide Sequencing standards
- Abstract
Sample tracking and identity are essential when processing multiple samples in parallel. Sequencing applications often involve high sample numbers, and the data are frequently used in a clinical setting. As such, a simple and accurate intrinsic sample tracking process through a sequencing pipeline is essential. Various solutions have been implemented to verify sample identity, including variant detection at the start and end of the pipeline using arrays or genotyping, bioinformatic comparisons, and optical barcoding of samples. None of these approaches are optimal. To establish a more effective approach using genetic barcoding, we developed a panel of unique DNA sequences cloned into a common vector. A unique DNA sequence is added to the sample when it is first received and can be detected by PCR and/or sequencing at any stage of the process. The control sequences are approximately 200 bases long with low identity to any sequence in the National Center for Biotechnology Information nonredundant database (<30 bases) and contain no long homopolymer (>7) stretches. When a spiked next-generation sequencing library is sequenced, sequence reads derived from this control sequence are generated along with the standard sequencing run and are used to confirm sample identity and determine cross-contamination levels. This approach is used in our targeted clinical diagnostic whole-genome and RNA-sequencing pipelines and is an inexpensive, flexible, and platform-agnostic solution., (Copyright © 2020 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
27. Data sharing as a national quality improvement program: reporting on BRCA1 and BRCA2 variant-interpretation comparisons through the Canadian Open Genetics Repository (COGR).
- Author
-
Lebo MS, Zakoor KR, Chun K, Speevak MD, Waye JS, McCready E, Parboosingh JS, Lamont RE, Feilotter H, Bosdet I, Tucker T, Young S, Karsan A, Charames GS, Agatep R, Spriggs EL, Chisholm C, Vasli N, Daoud H, Jarinova O, Tomaszewski R, Hume S, Taylor S, Akbari MR, and Lerner-Ellis J
- Subjects
- Canada, Clinical Decision-Making, Databases, Genetic, Genes, BRCA1, Genes, BRCA2, Genetic Counseling, Genetic Testing methods, Genetic Variation, Government Programs, Humans, Reproducibility of Results, Workflow, Data Accuracy, Genetic Testing standards, Information Dissemination, Quality Improvement
- Abstract
PurposeThe purpose of this study was to develop a national program for Canadian diagnostic laboratories to compare DNA-variant interpretations and resolve discordant-variant classifications using the BRCA1 and BRCA2 genes as a case study.MethodsBRCA1 and BRCA2 variant data were uploaded and shared through the Canadian Open Genetics Repository (COGR; http://www.opengenetics.ca). A total of 5,554 variant observations were submitted; classification differences were identified and comparison reports were sent to participating laboratories. Each site had the opportunity to reclassify variants. The data were analyzed before and after the comparison report process to track concordant- or discordant-variant classifications by three different models.ResultsVariant-discordance rates varied by classification model: 38.9% of variants were discordant when using a five-tier model, 26.7% with a three-tier model, and 5.0% with a two-tier model. After the comparison report process, the proportion of discordant variants dropped to 30.7% with the five-tier model, to 14.2% with the three-tier model, and to 0.9% using the two-tier model.ConclusionWe present a Canadian interinstitutional quality improvement program for DNA-variant interpretations. Sharing of variant knowledge by clinical diagnostic laboratories will allow clinicians and patients to make more informed decisions and lead to better patient outcomes.
- Published
- 2018
- Full Text
- View/download PDF
28. Homologous Recombination Deficiency and Platinum-Based Therapy Outcomes in Advanced Breast Cancer.
- Author
-
Zhao EY, Shen Y, Pleasance E, Kasaian K, Leelakumari S, Jones M, Bose P, Ch'ng C, Reisle C, Eirew P, Corbett R, Mungall KL, Thiessen N, Ma Y, Schein JE, Mungall AJ, Zhao Y, Moore RA, Den Brok W, Wilson S, Villa D, Shenkier T, Lohrisch C, Chia S, Yip S, Gelmon K, Lim H, Renouf D, Sun S, Schrader KA, Young S, Bosdet I, Karsan A, Laskin J, Marra MA, and Jones SJM
- Subjects
- Disease-Free Survival, Female, Homologous Recombination drug effects, Humans, Middle Aged, Mutation, Neoplasm Staging, Platinum administration & dosage, Treatment Outcome, Triple Negative Breast Neoplasms drug therapy, Triple Negative Breast Neoplasms pathology, Whole Genome Sequencing, BRCA1 Protein genetics, BRCA2 Protein genetics, Homologous Recombination genetics, Triple Negative Breast Neoplasms genetics
- Abstract
Purpose: Recent studies have identified mutation signatures of homologous recombination deficiency (HRD) in over 20% of breast cancers, as well as pancreatic, ovarian, and gastric cancers. There is an urgent need to understand the clinical implications of HRD signatures. Whereas BRCA1/2 mutations confer sensitivity to platinum-based chemotherapies, it is not yet clear whether mutation signatures can independently predict platinum response. Experimental Design: In this observational study, we sequenced tumor whole genomes (100× depth) and matched normals (60×) of 93 advanced-stage breast cancers (33 platinum-treated). We computed a published metric called HRDetect, independently trained to predict BRCA1/2 status, and assessed its capacity to predict outcomes on platinum-based chemotherapies. Clinical endpoints were overall survival (OS), total duration on platinum-based therapy (TDT), and radiographic evidence of clinical improvement (CI). Results: HRDetect predicted BRCA1/2 status with an area under the curve (AUC) of 0.94 and optimal threshold of 0.7. Elevated HRDetect was also significantly associated with CI on platinum-based therapy (AUC = 0.89; P = 0.006) with the same optimal threshold, even after adjusting for BRCA1/2 mutation status and treatment timing. HRDetect scores over 0.7 were associated with a 3-month extended median TDT ( P = 0.0003) and 1.3-year extended median OS ( P = 0.04). Conclusions: Our findings not only independently validate HRDetect, but also provide the first evidence of its association with platinum response in advanced breast cancer. We demonstrate that HRD mutation signatures may offer clinically relevant information independently of BRCA1/2 mutation status and hope this work will guide the development of clinical trials. Clin Cancer Res; 23(24); 7521-30. ©2017 AACR ., (©2017 American Association for Cancer Research.)
- Published
- 2017
- Full Text
- View/download PDF
29. A population-based review of the feasibility of platinum-based combination chemotherapy after tyrosine kinase inhibition in EGFR mutation positive non-small cell lung cancer patients with advanced disease.
- Author
-
Mariano C, Bosdet I, Karsan A, Ionescu D, Murray N, Laskin JJ, Zhai Y, Melosky B, Sun S, and Ho C
- Subjects
- Aged, Carboplatin administration & dosage, Carboplatin adverse effects, Carcinoma, Non-Small-Cell Lung genetics, ErbB Receptors genetics, Feasibility Studies, Female, Gefitinib, Humans, Lung Neoplasms genetics, Male, Mutation genetics, Paclitaxel administration & dosage, Paclitaxel adverse effects, Population Groups, Quinazolines administration & dosage, Quinazolines adverse effects, Antineoplastic Combined Chemotherapy Protocols therapeutic use, Carcinoma, Non-Small-Cell Lung drug therapy, Lung Neoplasms drug therapy, Platinum Compounds therapeutic use
- Abstract
Introduction: The IPASS trial demonstrated superior progression free survival for Asian, light/never smoking, advanced, pulmonary adenocarcinoma patients treated with first-line gefitinib compared to carboplatin/paclitaxel, of which 59% of those tested were epidermal growth factor receptor (EGFR) mutation positive. In IPASS 39% of gefitinib treated patients went on to receive platin based polychemotherapy. We hypothesized that in a population-based setting fewer patients receive second-line platin based chemotherapy than those enrolled in a clinical trial., Methods: The Iressa Alliance program provided standardized EGFR mutation testing and appropriate access to gefitinib to all patients in British Columbia with advanced, non squamous non small cell lung cancer (NSCLC). We retrospectively analyzed clinical, pathologic data and outcomes for all patients tested in this program between March 2010 and June 2011., Results: A total of 548 patients were referred for testing and 22% of patients were mutation positive. Baseline characteristics of mutation negative and mutation positive; median age 67/65, male 41%/31%, Asian 15%/51%, never smoker 21%/58%, stage IV 80%/91%. Median overall survival was 12 months in mutation negative patients and not yet reached in mutation positive (p<0.0001). In mutation positive patients 5% of patients had a complete response, 46% partial response, 34% stable disease, 6% progressive disease. Twenty percent of patients continued on gefitinib after radiographic progression and clinical stability. Sixty-one gefitinib treated patients progressed at the time of analysis; 10% of patients received further gefitinib only, 38% platinum based doublet, 8% other chemotherapy and 44% no further treatment. Performance status most strongly predicted for delivery of second line chemotherapy., Conclusions: This North American population based study shows similar efficacy of gefitinib in mutation positive patients compared to the IPASS trial. Contrary to our hypothesis, delivery of second line chemotherapy was feasible in a significant proportion of gefitinib treated patients., (Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
30. echinus, required for interommatidial cell sorting and cell death in the Drosophila pupal retina, encodes a protein with homology to ubiquitin-specific proteases.
- Author
-
Copeland JM, Bosdet I, Freeman JD, Guo M, Gorski SM, and Hay BA
- Subjects
- Alternative Splicing, Amino Acid Sequence, Animals, Apoptosis physiology, Cell Lineage genetics, Cell Lineage physiology, Cysteine Endopeptidases metabolism, DNA, Complementary chemistry, DNA, Complementary genetics, Drosophila Proteins metabolism, Drosophila melanogaster metabolism, Drosophila melanogaster ultrastructure, Endopeptidases genetics, Endopeptidases metabolism, Eye cytology, Eye metabolism, Eye ultrastructure, Female, Gene Expression, Immunohistochemistry, In Situ Nick-End Labeling, Male, Microscopy, Electron, Scanning, Molecular Sequence Data, Mutation, Protein Isoforms genetics, Protein Isoforms metabolism, RNA Interference, Retina cytology, Retina ultrastructure, Reverse Transcriptase Polymerase Chain Reaction, Sequence Analysis, DNA, Sequence Homology, Amino Acid, Ubiquitin metabolism, Ubiquitin-Specific Proteases, Apoptosis genetics, Cysteine Endopeptidases genetics, Drosophila Proteins genetics, Drosophila melanogaster genetics, Retina metabolism
- Abstract
Background: Programmed cell death is used to remove excess cells between ommatidia in the Drosophila pupal retina. This death is required to establish the crystalline, hexagonal packing of ommatidia that characterizes the adult fly eye. In previously described echinus mutants, interommatidial cell sorting, which precedes cell death, occurred relatively normally. Interommatidial cell death was partially suppressed, resulting in adult eyes that contained excess pigment cells, and in which ommatidia were mildly disordered. These results have suggested that echinus functions in the pupal retina primarily to promote interommatidial cell death., Results: We generated a number of new echinus alleles, some likely null mutants. Analysis of these alleles provides evidence that echinus has roles in cell sorting as well as cell death. echinus encodes a protein with homology to ubiquitin-specific proteases. These proteins cleave ubiquitin-conjugated proteins at the ubiquitin C-terminus. The echinus locus encodes multiple splice forms, including two proteins that lack residues thought to be critical for deubiquitination activity. Surprisingly, ubiquitous expression in the eye of versions of Echinus that lack residues critical for ubiquitin specific protease activity, as well as a version predicted to be functional, rescue the echinus loss-of-function phenotype. Finally, genetic interactions were not detected between echinus loss and gain-of-function and a number of known apoptotic regulators. These include Notch, EGFR, the caspases Dronc, Drice, Dcp-1, Dream, the caspase activators, Rpr, Hid, and Grim, the caspase inhibitor DIAP1, and Lozenge or Klumpfuss., Conclusion: The echinus locus encodes multiple splice forms of a protein with homology to ubiquitin-specific proteases, but protease activity is unlikely to be required for echinus function, at least when echinus is overexpressed. Characterization of likely echinus null alleles and genetic interactions suggests that echinus acts at a novel point(s) to regulate interommatidial cell sorting and/or cell death in the fly eye.
- Published
- 2007
- Full Text
- View/download PDF
31. A BAC clone fingerprinting approach to the detection of human genome rearrangements.
- Author
-
Krzywinski M, Bosdet I, Mathewson C, Wye N, Brebner J, Chiu R, Corbett R, Field M, Lee D, Pugh T, Volik S, Siddiqui A, Jones S, Schein J, Collins C, and Marra M
- Subjects
- Computer Simulation, DNA Primers, DNA Restriction Enzymes, Humans, Chromosomes, Artificial, Bacterial, DNA Fingerprinting methods, Gene Rearrangement genetics, Genome, Human genetics
- Abstract
We present a method, called fingerprint profiling (FPP), that uses restriction digest fingerprints of bacterial artificial chromosome clones to detect and classify rearrangements in the human genome. The approach uses alignment of experimental fingerprint patterns to in silico digests of the sequence assembly and is capable of detecting micro-deletions (1-5 kb) and balanced rearrangements. Our method has compelling potential for use as a whole-genome method for the identification and characterization of human genome rearrangements.
- Published
- 2007
- Full Text
- View/download PDF
32. The genome of the sea urchin Strongylocentrotus purpuratus.
- Author
-
Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Bellé R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Genevière AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron KF, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallböök F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su YH, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Röttinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu SY, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu LL, Thorn R, and Wright R
- Subjects
- Animals, Calcification, Physiologic, Cell Adhesion Molecules genetics, Cell Adhesion Molecules physiology, Complement Activation genetics, Computational Biology, Embryonic Development genetics, Evolution, Molecular, Gene Expression Regulation, Developmental, Genes, Immunity, Innate genetics, Immunologic Factors genetics, Immunologic Factors physiology, Male, Nervous System Physiological Phenomena, Proteins genetics, Proteins physiology, Signal Transduction, Strongylocentrotus purpuratus embryology, Strongylocentrotus purpuratus immunology, Strongylocentrotus purpuratus physiology, Transcription Factors genetics, Genome, Sequence Analysis, DNA, Strongylocentrotus purpuratus genetics
- Abstract
We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.
- Published
- 2006
- Full Text
- View/download PDF
33. A BAC-based physical map of the Drosophila buzzatii genome.
- Author
-
González J, Nefedov M, Bosdet I, Casals F, Calvete O, Delprat A, Shin H, Chiu R, Mathewson C, Wye N, Hoskins RA, Schein JE, de Jong P, and Ruiz A
- Subjects
- Animals, Chromosomes, Artificial, Bacterial, Sequence Analysis, DNA, Contig Mapping, Drosophila genetics, Genes, Insect, Genomic Library
- Abstract
Large-insert genomic libraries facilitate cloning of large genomic regions, allow the construction of clone-based physical maps, and provide useful resources for sequencing entire genomes. Drosophila buzzatii is a representative species of the repleta group in the Drosophila subgenus, which is being widely used as a model in studies of genome evolution, ecological adaptation, and speciation. We constructed a Bacterial Artificial Chromosome (BAC) genomic library of D. buzzatii using the shuttle vector pTARBAC2.1. The library comprises 18,353 clones with an average insert size of 152 kb and an approximately 18x expected representation of the D. buzzatii euchromatic genome. We screened the entire library with six euchromatic gene probes and estimated the actual genome representation to be approximately 23x. In addition, we fingerprinted by restriction digestion and agarose gel electrophoresis a sample of 9555 clones, and assembled them using FingerPrint Contigs (FPC) software and manual editing into 345 contigs (mean of 26 clones per contig) and 670 singletons. Finally, we anchored 181 large contigs (containing 7788 clones) to the D. buzzatii salivary gland polytene chromosomes by in situ hybridization of 427 representative clones. The BAC library and a database with all the information regarding the high coverage BAC-based physical map described in this paper are available to the research community.
- Published
- 2005
- Full Text
- View/download PDF
34. A set of BAC clones spanning the human genome.
- Author
-
Krzywinski M, Bosdet I, Smailus D, Chiu R, Mathewson C, Wye N, Barber S, Brown-John M, Chan S, Chand S, Cloutier A, Girn N, Lee D, Masson A, Mayo M, Olson T, Pandoh P, Prabhu AL, Schoenmakers E, Tsai M, Albertson D, Lam W, Choy CO, Osoegawa K, Zhao S, de Jong PJ, Schein J, Jones S, and Marra MA
- Subjects
- Base Sequence, Cloning, Molecular, Humans, Physical Chromosome Mapping, Chromosomes, Artificial, Bacterial, Genome, Human
- Abstract
Using the human bacterial artificial chromosome (BAC) fingerprint-based physical map, genome sequence assembly and BAC end sequences, we have generated a fingerprint-validated set of 32 855 BAC clones spanning the human genome. The clone set provides coverage for at least 98% of the human fingerprint map, 99% of the current assembled sequence and has an effective resolving power of 79 kb. We have made the clone set publicly available, anticipating that it will generally facilitate FISH or array-CGH-based identification and characterization of chromosomal alterations relevant to disease.
- Published
- 2004
- Full Text
- View/download PDF
35. Genome sequence of the Brown Norway rat yields insights into mammalian evolution.
- Author
-
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Simons R, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Albà M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hübner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, López-Otín C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, and Collins F
- Subjects
- Animals, Base Composition, Centromere genetics, Chromosomes, Mammalian genetics, CpG Islands genetics, DNA Transposable Elements genetics, DNA, Mitochondrial genetics, Gene Duplication, Humans, Introns genetics, Male, Mice, Models, Molecular, Mutagenesis, Polymorphism, Single Nucleotide genetics, RNA Splice Sites genetics, RNA, Untranslated genetics, Rats, Regulatory Sequences, Nucleic Acid genetics, Retroelements genetics, Sequence Analysis, DNA, Telomere genetics, Evolution, Molecular, Genome, Genomics, Rats, Inbred BN genetics
- Abstract
The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.
- Published
- 2004
- Full Text
- View/download PDF
36. Integrated and sequence-ordered BAC- and YAC-based physical maps for the rat genome.
- Author
-
Krzywinski M, Wallis J, Gösele C, Bosdet I, Chiu R, Graves T, Hummel O, Layman D, Mathewson C, Wye N, Zhu B, Albracht D, Asano J, Barber S, Brown-John M, Chan S, Chand S, Cloutier A, Davito J, Fjell C, Gaige T, Ganten D, Girn N, Guggenheimer K, Himmelbauer H, Kreitler T, Leach S, Lee D, Lehrach H, Mayo M, Mead K, Olson T, Pandoh P, Prabhu AL, Shin H, Tänzer S, Thompson J, Tsai M, Walker J, Yang G, Sekhon M, Hillier L, Zimdahl H, Marziali A, Osoegawa K, Zhao S, Siddiqui A, de Jong PJ, Warren W, Mardis E, McPherson JD, Wilson R, Hübner N, Jones S, Marra M, and Schein J
- Subjects
- Animals, Automation, Chromosomes genetics, Cloning, Molecular methods, Computational Biology methods, Computational Biology standards, Contig Mapping methods, Contig Mapping standards, DNA Fingerprinting methods, DNA Fingerprinting standards, Genetic Markers genetics, Physical Chromosome Mapping standards, Polymerase Chain Reaction methods, Rats, Sequence Analysis, DNA methods, Sequence Analysis, DNA standards, Chromosomes, Artificial, Bacterial genetics, Chromosomes, Artificial, Yeast genetics, Genome, Physical Chromosome Mapping methods
- Abstract
As part of the effort to sequence the genome of Rattus norvegicus, we constructed a physical map comprised of fingerprinted bacterial artificial chromosome (BAC) clones from the CHORI-230 BAC library. These BAC clones provide approximately 13-fold redundant coverage of the genome and have been assembled into 376 fingerprint contigs. A yeast artificial chromosome (YAC) map was also constructed and aligned with the BAC map via fingerprinted BAC and P1 artificial chromosome clones (PACs) sharing interspersed repetitive sequence markers with the YAC-based physical map. We have annotated 95% of the fingerprint map clones in contigs with coordinates on the version 3.1 rat genome sequence assembly, using BAC-end sequences and in silico mapping methods. These coordinates have allowed anchoring 358 of the 376 fingerprint map contigs onto the sequence assembly. Of these, 324 contigs are anchored to rat genome sequences localized to chromosomes, and 34 contigs are anchored to unlocalized portions of the rat sequence assembly. The remaining 18 contigs, containing 54 clones, still require placement. The fingerprint map is a high-resolution integrative data resource that provides genome-ordered associations among BAC, YAC, and PAC clones and the assembled sequence of the rat genome.
- Published
- 2004
- Full Text
- View/download PDF
37. Genome resource for the Indonesian coelacanth, Latimeria menadoensis.
- Author
-
Danke J, Miyake T, Powers T, Schein J, Shin H, Bosdet I, Erdmann M, Caldwell R, and Amemiya CT
- Subjects
- Animals, Chromosomes, Artificial, Bacterial, Electrophoresis, Gel, Pulsed-Field, Fishes genetics, Genomic Library
- Abstract
We have generated a BAC library from the Indonesian coelacanth, Latimeria menadoensis. This library was generated using genomic DNA of nuclei isolated from heart tissue, and has an average insert size of 171 kb. There are a total of 288 384-well microtiter dishes in the library (110,592 clones) and its genomic representation is estimated to encompass > or = 7X coverage based on the amount of DNA presumably cloned in the library as well as via hybridization with probes to a small set of single copy genes. This genomic resource has been made available to the public and should prove useful to the scientific community for many applications, including comparative genomics, molecular evolution and conservation genetics., (Copyright 2004 Wiley-Liss, Inc.)
- Published
- 2004
- Full Text
- View/download PDF
38. Internet Contig Explorer (iCE)--a tool for visualizing clone fingerprint maps.
- Author
-
Fjell CD, Bosdet I, Schein JE, Jones SJ, and Marra MA
- Subjects
- Animals, Arabidopsis genetics, Caenorhabditis genetics, Caenorhabditis elegans genetics, DNA, Helminth genetics, DNA, Plant genetics, Humans, Mice, Oryza genetics, Rats, Cloning, Molecular methods, Contig Mapping methods, DNA Fingerprinting methods, Internet, Software
- Abstract
Fingerprinted clone physical maps have proven useful in various applications, supporting both whole-genome and region-specific DNA sequencing as well as gene cloning studies. Fingerprint maps have been generated for several genomes, including those of human, mouse, rat, the nematodes Caenorhabditis elegans and Caenorhabditis briggsae, Arabidopsis thaliana and rice. Fingerprint maps of other genomes, including those of fungi, bacteria, poplar, and the cow, are being generated. The increasing use of fingerprint maps in genomic research has spawned a need in the research community for intuitive computer tools that facilitate viewing of the maps and the underlying fingerprint data. In this report we describe a new Java-based application called iCE (Internet Contig Explorer) that has been designed to provide views of fingerprint maps and associated data. Users can search for and display individual clones, contigs, clone fingerprints, clone insert sizes and markers. Users can also load into the software lists of particular clones of interest and view their fingerprints. iCE is being used at our Genome Centre to offer up to the research community views of the mouse, rat, bovine, C. briggsae, and several fungal genome bacterial artificial chromosome (BAC) fingerprint maps we have either completed or are currently constructing. We are also using iCE as part of the Rat Genome Sequencing Project to manage our provision of rat BAC clones for sequencing at the Human Genome Sequencing Center at the Baylor College of Medicine.
- Published
- 2003
- Full Text
- View/download PDF
39. Physical maps for genome analysis of serotype A and D strains of the fungal pathogen Cryptococcus neoformans.
- Author
-
Schein JE, Tangen KL, Chiu R, Shin H, Lengeler KB, MacDonald WK, Bosdet I, Heitman J, Jones SJ, Marra MA, and Kronstad JW
- Subjects
- Chromosomes, Artificial, Bacterial genetics, Contig Mapping, Cryptococcus neoformans pathogenicity, DNA Fingerprinting methods, DNA, Fungal genetics, Databases, Genetic, Electrophoresis, Genetic Markers genetics, Humans, Karyotyping, Sequence Analysis, DNA methods, Chromosomes, Fungal genetics, Cryptococcus neoformans classification, Cryptococcus neoformans genetics, Genome, Fungal, Physical Chromosome Mapping methods, Serotyping
- Abstract
The basidiomycete fungus Cryptococcus neoformans is an important opportunistic pathogen of humans that poses a significant threat to immunocompromised individuals. Isolates of C. neoformans are classified into serotypes (A, B, C, D, and AD) based on antigenic differences in the polysaccharide capsule that surrounds the fungal cells. Genomic and EST sequencing projects are underway for the serotype D strain JEC21 and the serotype A strain H99. As part of a genomics program for C. neoformans, we have constructed fingerprinted bacterial artificial chromosome (BAC) clone physical maps for strains H99 and JEC21 to support the genomic sequencing efforts and to provide an initial comparison of the two genomes. The BAC clones represented an estimated 10-fold redundant coverage of the genomes of each serotype and allowed the assembly of 20 contigs each for H99 and JEC21. We found that the genomes of the two strains are sufficiently distinct to prevent coassembly of the two maps when combined fingerprint data are used to construct contigs. Hybridization experiments placed 82 markers on the JEC21 map and 102 markers on the H99 map, enabling contigs to be linked with specific chromosomes identified by electrophoretic karyotyping. These markers revealed both extensive similarity in gene order (conservation of synteny) between JEC21 and H99 as well as examples of chromosomal rearrangements including inversions and translocations. Sequencing reads were generated from the ends of the BAC clones to allow correlation of genomic shotgun sequence data with physical map contigs. The BAC maps therefore represent a valuable resource for the generation, assembly, and finishing of the genomic sequence of both JEC21 and H99. The physical maps also serve as a link between map-based and sequence-based data, providing a powerful resource for continued genomic studies
- Published
- 2002
- Full Text
- View/download PDF
40. A physical map of the mouse genome.
- Author
-
Gregory SG, Sekhon M, Schein J, Zhao S, Osoegawa K, Scott CE, Evans RS, Burridge PW, Cox TV, Fox CA, Hutton RD, Mullenger IR, Phillips KJ, Smith J, Stalker J, Threadgold GJ, Birney E, Wylie K, Chinwalla A, Wallis J, Hillier L, Carter J, Gaige T, Jaeger S, Kremitzki C, Layman D, Maas J, McGrane R, Mead K, Walker R, Jones S, Smith M, Asano J, Bosdet I, Chan S, Chittaranjan S, Chiu R, Fjell C, Fuhrmann D, Girn N, Gray C, Guin R, Hsiao L, Krzywinski M, Kutsche R, Lee SS, Mathewson C, McLeavy C, Messervier S, Ness S, Pandoh P, Prabhu AL, Saeedi P, Smailus D, Spence L, Stott J, Taylor S, Terpstra W, Tsai M, Vardy J, Wye N, Yang G, Shatsman S, Ayodeji B, Geer K, Tsegaye G, Shvartsbeyn A, Gebregeorgis E, Krol M, Russell D, Overton L, Malek JA, Holmes M, Heaney M, Shetty J, Feldblyum T, Nierman WC, Catanese JJ, Hubbard T, Waterston RH, Rogers J, de Jong PJ, Fraser CM, Marra M, McPherson JD, and Bentley DR
- Subjects
- Animals, Chromosomes genetics, Chromosomes, Human, Pair 6 genetics, Cloning, Molecular, Conserved Sequence genetics, Contig Mapping methods, Genome, Human, Humans, Molecular Sequence Data, Radiation Hybrid Mapping, Sequence Alignment, Sequence Homology, Nucleic Acid, Species Specificity, Synteny, Genome, Mice genetics, Physical Chromosome Mapping methods
- Abstract
A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs were aligned to the human genome sequence on the basis of 51,486 homology matches, thus enabling use of the conserved synteny (correspondence between chromosome blocks) of the two genomes to accelerate construction of the mouse map. The map provides a framework for assembly of whole-genome shotgun sequence data, and a tile path of clones for generation of the reference sequence. Definition of the human-mouse alignment at this level of resolution enables identification of a mouse clone that corresponds to almost any position in the human genome. The human sequence may be used to facilitate construction of other mammalian genome maps using the same strategy.
- Published
- 2002
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.