1. Efficient, end-to-end and self-supervised methods for speech processing and generation
- Author
-
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Bonafonte Cávez, Antonio, Serra Julià, Joan, Pascual de la Puente, Santiago, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Bonafonte Cávez, Antonio, Serra Julià, Joan, and Pascual de la Puente, Santiago
- Abstract
Premi extraordinari doctorat UPC curs 2019-2020, àmbit d’Enginyeria de les TIC, Deep learning has affected the speech processing and generation fields in many directions. First, end-to-end architectures allow the direct injection and synthesis of waveform samples. Secondly, the exploration of efficient solutions allow to implement these systems in computationally restricted environments, like smartphones. Finally, the latest trends exploit audio-visual data with least supervision. In this thesis these three directions are explored. Firstly, we propose the use of recent pseudo-recurrent structures, like self-attention models and quasi-recurrent networks, to build acoustic models for text-to-speech. The proposed system, QLAD, turns out to synthesize faster on CPU and GPU than its recurrent counterpart whilst preserving the good synthesis quality level, which is competitive with state of the art vocoder-based models. Then, a generative adversarial network is proposed for speech enhancement, named SEGAN. This model works as a speech-to-speech conversion system in time-domain, where a single inference operation is needed for all samples to operate through a fully convolutional structure. This implies an increment in modeling efficiency with respect to other existing models, which are auto-regressive and also work in time-domain. SEGAN achieves prominent results in noise supression and preservation of speech naturalness and intelligibility when compared to the other classic and deep regression based systems. We also show that SEGAN is efficient in transferring its operations to new languages and noises. A SEGAN trained for English performs similarly to this language on Catalan and Korean with only 24 seconds of adaptation data. Finally, we unveil the generative capacity of the model to recover signals from several distortions. We hence propose the concept of generalized speech enhancement. First, the model proofs to be effective to recover voiced speech from whispered one. Then the model is scaled up to solve other distortions that require a recompos, L'aprenentatge profund ha afectat els camps de processament i generació de la parla en vàries direccions. Primer, les arquitectures fi-a-fi permeten la injecció i síntesi de mostres temporals directament. D'altra banda, amb l'exploració de solucions eficients permet l'aplicació d'aquests sistemes en entorns de computació restringida, com els telèfons intel·ligents. Finalment, les darreres tendències exploren les dades d'àudio i veu per derivar-ne representacions amb la mínima supervisió. En aquesta tesi precisament s'exploren aquestes tres direccions. Primer de tot, es proposa l'ús d'estructures pseudo-recurrents recents, com els models d’auto atenció i les xarxes quasi-recurrents, per a construir models acústics text-a-veu. Així, el sistema QLAD proposat en aquest treball sintetitza més ràpid en CPU i GPU que el seu homòleg recurrent, preservant el mateix nivell de qualitat de síntesi, competitiu amb l'estat de l'art en models basats en vocoder. A continuació es proposa un model de xarxa adversària generativa per a millora de veu, anomenat SEGAN. Aquest model fa conversions de veu-a-veu en temps amb una sola operació d'inferència sobre una estructura purament convolucional. Això implica un increment en l'eficiència respecte altres models existents auto regressius i que també treballen en el domini temporal. La SEGAN aconsegueix resultats prominents d'extracció de soroll i preservació de la naturalitat i la intel·ligibilitat de la veu comparat amb altres sistemes clàssics i models regressius basats en xarxes neuronals profundes en espectre. També es demostra que la SEGAN és eficient transferint les seves operacions a nous llenguatges i sorolls. Així, un model SEGAN entrenat en Anglès aconsegueix un rendiment comparable a aquesta llengua quan el transferim al català o al coreà amb només 24 segons de dades d'adaptació. Finalment, explorem l'ús de tota la capacitat generativa del model i l’apliquem a recuperació de senyals de veu malmeses per vàries distorsions severes, Award-winning, Postprint (published version)
- Published
- 2020