Back to Search
Start Over
Grapheme-to-phoneme conversion in the era of globalization
- Source :
- TDX (Tesis Doctorals en Xarxa)
- Publication Year :
- 2015
-
Abstract
- This thesis focuses on the phonetic transcription in the framework of text-to-speech conversion, especially on improving adaptability, reliability and multilingual support in the phonetic module. The language is constantly evolving making the adaptability one of major concerns in phonetic transcription. The phonetic transcription has been addressed from a data- based approach. On one hand, several classifiers such as Decision Trees, Finite State Transducers, Hidden Markov Models were studied and applied to the grapheme-to-phoneme conversion task. In addition, we analyzed a method of generation of pronunciation by analogy, considering different strategies. Further improvements were obtained by means of application of the transformation-based error-driven learning algorithm. The most significant improvements were obtained for classifiers with higher error rates. The experimental results show that the adaptability of phonetic module was improved, having obtained word error rates as low as 12% (for English). Next, steps were taken towards increasing reliability of the output of the phonetic module. Although, the G2P results were quite good, in order to achieve a higher level of reliability we propose using dictionary fusion. The ways the pronunciations are represented in different lexica depend on many factors such as: expert¿s opinion, local accent specifications, phonetic alphabet chosen, assimilation level (for proper names), etc. There are often discrepancies between pronunciations of the same word found in different lexica. The fusion system is a system that learns phoneme-to-phoneme transformations and converts pronunciations from the source lexicon into pronunciations from the target lexicon. Another important part of this thesis consisted in acing the challenge of multilingualism, a phenomenon that is becoming a usual part of our daily lives. Our goal was to obtain such pronunciations for foreign inclusions that would not be totally unfamiliar either to a native<br />Fa tan sols uns deu anys les aplicacions de sistemes TTS eren molt més limitades, encara que un passat tan recent sembla més llunyà a causa dels canvis produïts en les nostres vides per la invasió massiva de les tecnologies intel·ligents. Els processos d’automatització de serveis també han assolit nous nivells. Què és el que defineix un bon sistema TTS avui dia? El mercat exigeix que aquest sigui molt adaptable a qualsevol tipus d’àmbit. També és imprescindible un alt nivell de fiabilitat ja que un simple error d’un TTS pot causar problemes seriosos en el nostre dia a dia. La nostra agenda és cada vegada més exigent i hem de fer front a més volums d’informació en menys temps. Deleguem les nostres tasques quotidianes als nostres dispositius intel·ligents que ens ajuden a llegir llibres, triar productes, trobar un lloc al mapa, etc. A més viatgem més i més cada dia. Aprenem a parlar noves llengües, les barregem, en un món més i més globalitzat. Un sistema TTS que no és capaç de fer front a les entrades multilingües no serà capaç de sostenir la competència. Els sistemes TTS moderns han de ser multilingües. La transcripció fonètica és el primer mòdul del TTS per la qual cosa el seu correcte funcionament és fonamental. Aquesta tesi se centra en la millora de l’adaptabilitat, fiabilitat i suport multilingüe del mòdul fonètic del nostre sistema TTS. El mòdul de transcripció fonètica del TTS va passar de ser basat en regles o diccionaris a ser automàtic, derivat de dades. La llengua està en constant evolució, igual que tots els organismes vius. És per això que l’adaptabilitat és un dels principals problemes de la transcripció fonètica. Per millorar-la es necessita un mètode basat en dades que funcioni bé per a derivar la pronunciació de paraules no trobades al lèxic del sistema. En aquesta tesi es comparen diferents mètodes G2P impulsats per dades que utilitzen les mateixes dades d’entrenament i test i es proposen millores. S’han aplicat diversos classificadors basats en da<br />Hace tan sólo unos diez años, las aplicaciones de sistemas TTS estaban mucho más limitadas, aunque un pasado tan reciente parece más lejano debido a los cambios producidos en nuestras vidas por la invasión masiva de las tecnologías inteligentes. Los procesos de automatización de los servicios han alcanzado a nuevos niveles. ¿Qué es lo que define un buen sistema TTS hoy en día? El mercado exige que éste sea muy adaptable a cualquier tipo de ámbito. También es imprescindible un alto nivel de fiabilidad, ya que un simple error de un TTS puede causar problemas serios en nuestro día a día. Nuestra agenda es cada vez más exigente y tenemos que hacer frente a un volumen cada vez mayor de información en menos tiempo. Delegamos nuestras tareas cotidianas a nuestros dispositivos inteligentes que nos ayudan a leer libros, elegir productos, encontrar un lugar en el mapa, etc. Además, cada día viajamos más, aprendemos a hablar nuevas lenguas, las mezclamos, volviéndonos más y más globalizados. Un sistema TTS que no sea capaz de hacer frente a las entradas multilngües no será capaz de sostener la competencia. Los sistemas TTS modernos tienen que ser multilngües. La transcripción fonética es el primer módulo del TTS por lo cual su correcto funcionamiento es fundamental. Esta tesis se centra en la mejora de la adaptabilidad, fiabilidad y soporte del módulo fonético de nuestro sistema TTS. El módulo de transcripción fonética del TTS pasó de ser basado en reglas o diccionarios a ser automática, basada en datos. La lengua está en constante evolución al igual que todos los organismos vivos. Es por eso que la adaptabilidad es uno de los principales problemas de la transcripción fonética. Para mejorarla se necesita un método basado en datos que funcione bien para derivar la pronunciación de palabras no encontradas en el léxico del sistema. En esta tesis se comparan diferentes métodos G2P basados en datos, utilizando los mismos datos de entrenamiento y test y se proponen mejoras. Se han e<br />Postprint (published version)
Details
- Database :
- OAIster
- Journal :
- TDX (Tesis Doctorals en Xarxa)
- Notes :
- 148 p., application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.ocn969840363
- Document Type :
- Electronic Resource