1. Hypoxia, acidification and oxidative stress in cells cultured at large distances from an oxygen source
- Author
-
Natali D’Aiuto, Jimena Hochmann, Magdalena Millán, Andrés Di Paolo, Ronell Bologna-Molina, José Sotelo Silveira, Miguel Arocena, D’Aiuto Natali, Universidad de la República (Uruguay) . Facultad de Odontología. Cátedra de Bioquímica y Biofísica., Hochmann Jimena, Universidad de la República (Uruguay) . Facultad de Medicina. Departamento de Fisiología, Millán Magdalena, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Di Paolo Andrés, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Bologna Molina Ronell, Universidad de la República (Uruguay). Facultad de Odontología. Departamento de Patología Molecular, Sotelo Silveira José, Universidad de la República (Uruguay). Facultad de Medicina. Sección Biología Celular, and Arocena Miguel, Universidad de la República (Uruguay) . Facultad de Odontología. Cátedra de Bioquímica y Biofísica
- Subjects
ESTRES OXIDATIVO ,Multidisciplinary ,HIPOXIA ,OXIGENO ,INGENIERIA DE TEJIDOS ,HIPOXIA DE LA CELULA - Abstract
Hypoxia is a condition frequently encountered by cells in tissues, whether as a normal feature of their microenvironment or subsequent to deregulated growth. Hypoxia can lead to acidification and increased oxidative stress, with profound consequences for cell physiology and tumorigenesis. Therefore, the interplay between hypoxia and oxidative stress is an important aspect for understanding the effects of hypoxic microenvironments on cells. We have used a previously developed variant of the method of coverslip-induced hypoxia to study the process of acidification in a hypoxic microenvironment and to simultaneously visualize intracellular levels of hypoxia and oxidative stress. We observed high accumulation of CO2 in hypoxic conditions, which we show is the main contributor to acidification in our model. Also, increased levels of oxidative stress were observed in moderately hypoxic cells close to the oxygen source, where the mitochondrial membrane potential was preserved. Conversely, cells at large distances from the oxygen source showed higher levels of hypoxia, milder oxidative stress and reduced mitochondrial membrane potential. Our results contribute to characterize the interplay between reduced oxygen levels, acidification and oxidative stress in a simple in vitro setting, which can be used to model cell responses to an altered environment, such as the early tumor microenvironment.
- Published
- 2022