1. Balancing trade-offs: Enhanced carbon assimilation and productivity with reduced nutritional value in a well-watered C 4 pasture under a warmer CO 2 -enriched atmosphere.
- Author
-
Habermann E, Dias de Oliveira EA, Bianconi ME, Contin DR, Lemos MTO, Costa JVCP, Oliveira KS, Riul BN, Bonifácio-Anacleto F, Viciedo DO, Approbato AU, Alzate-Marin AL, Prado RM, Costa KAP, and Martinez CA
- Subjects
- Animals, Water metabolism, Atmosphere, Photosynthesis, Poaceae metabolism, Plant Leaves metabolism, Nutritive Value, Carbon Dioxide metabolism, Ecosystem
- Abstract
The concentration of atmospheric CO
2 and temperature are pivotal components of ecosystem productivity, carbon balance, and food security. In this study, we investigated the impacts of a warmer climate (+2 °C above ambient temperature) and an atmosphere enriched with CO2 (600 ppm) on gas exchange, antioxidant enzymatic system, growth, nutritive value, and digestibility of a well-watered, managed pasture of Megathyrsus maximus, a tropical C4 forage grass, under field conditions. Elevated [CO2 ] (eC) improved photosynthesis and reduced stomatal conductance, resulting in increased water use efficiency and plant C content. Under eC, stem biomass production increased without a corresponding increase in leaf biomass, leading to a smaller leaf/stem ratio. Additionally, eC had negative impacts on forage nutritive value and digestibility. Elevated temperature (eT) increased photosynthetic gains, as well as stem and leaf biomass production. However, it reduced P and K concentration, forage nutritive value, and digestibility. Under the combined conditions of eC and eT (eCeT), eT completely offset the effects of eC on the leaf/stem ratio. However, eT intensified the effects of eC on photosynthesis, leaf C concentration, biomass accumulation, and nutritive value. This resulted in a forage with 12% more acid detergent fiber content and 28% more lignin. Additionally, there was a decrease of 19% in crude protein leading to a 15% decrease in forage digestibility. These changes could potentially affect animal feeding efficiency and feedback climate change, as ruminants may experience an amplification in methane emissions. Our results highlight the critical significance of conducting multifactorial field studies when evaluating plant responses to climate change variables., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Masson SAS. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF