1. Laponite-Modified Biopolymers as a Conformable Substrate for Optoelectronic Devices.
- Author
-
Onishi BSD, Carvalho RS, Bortoletto-Santos R, Santagneli SH, Barreto ARJ, Santos AM, Cremona M, Pandoli OG, Junior MNB, Faraco TA, Barud HS, de Farias RL, Ribeiro SJL, and Legnani C
- Abstract
Biopolymers such as carboxymethyl cellulose and hyaluronic acid are alternative substrates for conformable organic light-emitting diodes (OLEDs). However, drawbacks such as mechanical stress susceptibility can hinder the device's performance under stretched conditions. To overcome these limitations, herein, we developed a nanocomposite based on CMC/HA (carboxymethyl cellulose/hyaluronic acid) and synthetic Laponite, intending to improve the mechanical strength without compromising the film flexibility and transparency (transmittance >80%; 380-700 nm) as substrates for conformable OLEDs. From XRD, FTIR, CP-MAS NMR, and TGA/DTG characterization techniques, it was possible to conclude the presence of Laponite randomly dispersed between the polymer chains. CMC/HA with 5% (w/w) Laponite, CMC/HA 5, presented a higher tensile strength (370.6 MPa) and comparable Young's modulus (51.0 ± 1.2 MPa) in comparison to the nanocomposites and pristine films, indicating a better candidate for the device's substrates. To produce the OLED, the multilayer structure ITO/MoO
3 /NPB/TCTA:Ir(ppy)3 /TPBi:Ir(ppy)3 /BPhen/LiF was deposited onto the CMC/HA 5 substrate. The OLEDs fabricated using CMC/HA 5 substrates showed higher luminance (12 kcd/m2 ) and irradiance (0.9 mW/cm2 ) values when compared with those based on commercial bacterial cellulose. However, the same device presented a lower efficiency (3.2 cd/A) due to a higher current density. Moreover, the OLED fabricated onto the Laponite-modified biopolymer presented reproducible behavior when submitted to continuous bending stress. Thus, CMC/HA 5 demonstrates potential as a transparent conductor substrate for biopolymer-based OLEDs with comparable performance to commercial bacterial cellulose features., Competing Interests: The authors declare no competing financial interest., (© 2024 The Authors. Published by American Chemical Society.)- Published
- 2024
- Full Text
- View/download PDF