1. On the size of stable minimal surfaces in $${\mathbb {R}}^4$$
- Author
-
Ari Aiolfi, Marc Soret, Marina Ville, Universidade Federal de Santa Maria = Federal University of Santa Maria [Santa Maria, RS, Brazil] (UFSM), Institut Denis Poisson (IDP), Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Analyse et Mathématiques Appliquées (LAMA), and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel
- Subjects
Grassmannian ,General Mathematics ,Gauss map ,minimal surface ,stability ,[MATH]Mathematics [math] - Abstract
International audience; The Gauss map g of a surface ⌃ in R 4 takes its values in the Grassmannian of oriented 2-planes of R 4 : G + (2, 4). We give geometric criteria of stability for minimal surfaces in R 4 in terms of g. We show in particular that if the spherical area of the Gauss map |g(⌃)| of a minimal surface is smaller than 2⇡ then the surface is stable by deformations which fix the boundary of the surface. This answers the question of [BDC3] in R 4 .
- Published
- 2022
- Full Text
- View/download PDF