Back to Search
Start Over
On the size of stable minimal surfaces in $${\mathbb {R}}^4$$
- Source :
- Mathematische Zeitschrift, Mathematische Zeitschrift, 2022, 302 (2), pp.1155-1170. ⟨10.1007/s00209-022-03097-2⟩
- Publication Year :
- 2022
- Publisher :
- HAL CCSD, 2022.
-
Abstract
- International audience; The Gauss map g of a surface ⌃ in R 4 takes its values in the Grassmannian of oriented 2-planes of R 4 : G + (2, 4). We give geometric criteria of stability for minimal surfaces in R 4 in terms of g. We show in particular that if the spherical area of the Gauss map |g(⌃)| of a minimal surface is smaller than 2⇡ then the surface is stable by deformations which fix the boundary of the surface. This answers the question of [BDC3] in R 4 .
Details
- Language :
- English
- ISSN :
- 00255874 and 14321823
- Database :
- OpenAIRE
- Journal :
- Mathematische Zeitschrift, Mathematische Zeitschrift, 2022, 302 (2), pp.1155-1170. ⟨10.1007/s00209-022-03097-2⟩
- Accession number :
- edsair.doi.dedup.....d0a8f9635b1af8350c714aaf4ed26ad8
- Full Text :
- https://doi.org/10.1007/s00209-022-03097-2⟩