Back to Search Start Over

On the size of stable minimal surfaces in $${\mathbb {R}}^4$$

Authors :
Ari Aiolfi
Marc Soret
Marina Ville
Universidade Federal de Santa Maria = Federal University of Santa Maria [Santa Maria, RS, Brazil] (UFSM)
Institut Denis Poisson (IDP)
Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Analyse et Mathématiques Appliquées (LAMA)
Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel
Source :
Mathematische Zeitschrift, Mathematische Zeitschrift, 2022, 302 (2), pp.1155-1170. ⟨10.1007/s00209-022-03097-2⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; The Gauss map g of a surface ⌃ in R 4 takes its values in the Grassmannian of oriented 2-planes of R 4 : G + (2, 4). We give geometric criteria of stability for minimal surfaces in R 4 in terms of g. We show in particular that if the spherical area of the Gauss map |g(⌃)| of a minimal surface is smaller than 2⇡ then the surface is stable by deformations which fix the boundary of the surface. This answers the question of [BDC3] in R 4 .

Details

Language :
English
ISSN :
00255874 and 14321823
Database :
OpenAIRE
Journal :
Mathematische Zeitschrift, Mathematische Zeitschrift, 2022, 302 (2), pp.1155-1170. ⟨10.1007/s00209-022-03097-2⟩
Accession number :
edsair.doi.dedup.....d0a8f9635b1af8350c714aaf4ed26ad8
Full Text :
https://doi.org/10.1007/s00209-022-03097-2⟩