1. Imaging of Tumor-Associated Vascular Prostate-Specific Membrane Antigen in Woodchuck Model of Hepatocellular Carcinoma
- Author
-
Olga Sergeeva, Yifan Zhang, Willian Julian, Arun Sasikumar, Amad Awadallah, Jonathan Kenyon, Wuxian Shi, Maxim Sergeev, Steve Huang, Sandra Sexton, Renuka Iyer, Wei Xin, Norbert Avril, Ernest Ricky Chan, and Zhenghong Lee
- Subjects
PSMA ,Woodchuck Model of HCC ,PET Imaging ,Tumor-Associated Vasculature ,Diseases of the digestive system. Gastroenterology ,RC799-869 - Abstract
Background and Aims: Radiolabeled short peptide ligands targeting prostate-specific membrane antigen (PSMA) were developed initially for imaging and treatment of prostate cancers. While many nonprostate solid tumors including hepatocellular carcinoma (HCC) express little PSMA, their neovasculature expresses a high level of PSMA, which is avid for Gallium-68-labeled PSMA-targeting radioligand (68Ga-PSMA-11) for positron emission tomography (PET). However, the lack of a spontaneous animal model of tumor-associated vascular PSMA overexpression has hindered the development and assessment of PSMA-targeting radioligands for imaging and therapy of the nonprostatic cancers. We identified detectable indigenous PSMA expression on tumor neovascular endothelia in a naturally occurring woodchuck model of HCC. Methods: Molecular docking was performed with 3 bait PSMA ligands and compared between human and woodchuck PSMA. Initially, PET images were acquired dynamically after intravenously injecting 37 MBq (1.0 mCi) of 68Ga-PSMA-11 into woodchuck models of HCC. Subsequently, 10-minute static PET scans were conducted for other animals 1-hour after injection due to HCC and liver background uptake stabilization at 30–45 minutes after injection. Liver tissue samples were harvested after imaging, fresh-frozen for quantitative reverse transcription polymerase chain reaction and western blot for validation, or fixed for histology for correlation. Results: Our preclinical studies confirmed the initial clinical findings of 68Ga-PSMA-11 uptake in HCC. The agents (ligands and antibodies) developed against human PSMA were found to be reactive against the woodchuck PSMA. Conclusion: This animal model offers a unique opportunity for investigating the biogenesis of tumor-associated vascular PSMA, its functional role(s), and potentials for future treatment strategies targeting tumor vascular PSMA using already developed PSMA-targeting agents.
- Published
- 2022
- Full Text
- View/download PDF