1. Construction of the fluorescence sensing platform with a bifunctional Cu@MOF nanozyme for determination of alkaline phosphatase and its inhibitor.
- Author
-
Chen Y, Wang N, Lv Y, Zhou C, Liang Q, and Su X
- Subjects
- Humans, Enzyme Inhibitors chemistry, Enzyme Inhibitors pharmacology, Fluorescence, Limit of Detection, Copper chemistry, Alkaline Phosphatase antagonists & inhibitors, Alkaline Phosphatase metabolism, Alkaline Phosphatase chemistry, Alkaline Phosphatase blood, Metal-Organic Frameworks chemistry, Spectrometry, Fluorescence methods
- Abstract
In this work, a novel and sensitive fluorescence sensing system for alkaline phosphatase (ALP) was constructed using a bifunctional copper metal-organic framework (Cu@MOF) nanozyme, which had excellent oxidase-mimetic activity and fluorescence properties. Owing to the presence of 2-amino-1,4-benzenedicarboxylic acid (1,4-BDC-NH
2 ) ligand, Cu@MOF displays excellent fluorescence performance at 444 nm. Additionally, Cu2+ endows the oxidase-like activity of Cu@MOF, which could trigger p-phenylenediamine (PPD) to be oxidized to a brown product (PPDox) and quench the photoluminescence of Cu@MOF through the inner filtration effect (IFE). As the preferential affinity of ATP for Cu2+ , the catalytic activity of Cu@MOF was significantly reduced once ATP was added, thus PPD could not be oxidized and fluorescence was recovered. In the presence of ALP, ATP was hydrolyzed to adenosine and Pi, which allowed Cu@MOF to regain its catalytic activity and continued to catalyze the generation of PPDox. The fluorescence of Cu@MOF was therefore weakened once again. The ALP activity was directly proportional to the degree of decrease in fluorescence intensity. Thus, this novel fluorescence sensing strategy had a linear range of 0.5-60 U/L and the limit of detection was 0.14 U/L. The established sensing method could also be used to for ALP inhibitors screening, and achieved satisfactory results in determining the level of ALP activity in human serum., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF