1. Susceptibility of Ugandan Plasmodium falciparum Isolates to the Antimalarial Drug Pipeline
- Author
-
Oriana Kreutzfeld, Patrick K. Tumwebaze, Martin Okitwi, Stephen Orena, Oswald Byaruhanga, Thomas Katairo, Melissa D. Conrad, Stephanie A. Rasmussen, Jennifer Legac, Ozkan Aydemir, David Giesbrecht, Barbara Forte, Peter Campbell, Alasdair Smith, Hiroki Kano, Samuel L. Nsobya, Benjamin Blasco, Maelle Duffey, Jeffrey A. Bailey, Roland A. Cooper, and Philip J. Rosenthal
- Subjects
Plasmodium falciparum ,Ugandan field isolates ,antimalarials ,drug resistance ,genotypic identification ,malaria ,Microbiology ,QR1-502 - Abstract
ABSTRACT Malaria, especially Plasmodium falciparum infection, remains an enormous problem, and its treatment and control are seriously challenged by drug resistance. New antimalarial drugs are needed. To characterize the Medicines for Malaria Venture pipeline of antimalarials under development, we assessed the ex vivo drug susceptibilities to 19 compounds targeting or potentially impacted by mutations in P. falciparum ABC transporter I family member 1, acetyl-CoA synthetase, cytochrome b, dihydroorotate dehydrogenase, elongation factor 2, lysyl-tRNA synthetase, phenylalanyl-tRNA synthetase, plasmepsin X, prodrug activation and resistance esterase, and V-type H+ ATPase of 998 fresh P. falciparum clinical isolates collected in eastern Uganda from 2015 to 2022. Drug susceptibilities were assessed by 72-h growth inhibition (half-maximum inhibitory concentration [IC50]) assays using SYBR green. Field isolates were highly susceptible to lead antimalarials, with low- to midnanomolar median IC50s, near values previously reported for laboratory strains, for all tested compounds. However, outliers with decreased susceptibilities were identified. Positive correlations between IC50 results were seen for compounds with shared targets. We sequenced genes encoding presumed targets to characterize sequence diversity, search for polymorphisms previously selected with in vitro drug pressure, and determine genotype-phenotype associations. We identified many polymorphisms in target genes, generally in
- Published
- 2023
- Full Text
- View/download PDF