7 results on '"Abdullah Haroon Rasheed"'
Search Results
2. Learning to Measure the Static Friction Coefficient in Cloth Contact.
- Author
-
Abdullah Haroon Rasheed, Victor Romero, Florence Bertails-Descoubes, Stefanie Wuhrer, Jean-Sébastien Franco, and Arnaud Lazarus
- Published
- 2020
- Full Text
- View/download PDF
3. Physical validation of simulators in computer graphics: a new framework dedicated to slender elastic structures and frictional contact.
- Author
-
Victor Romero, Mickaël Ly, Abdullah Haroon Rasheed, Raphaël Charrondière, Arnaud Lazarus, Sébastien Neukirch, and Florence Bertails-Descoubes
- Published
- 2021
- Full Text
- View/download PDF
4. A Low Bit Architecture for a Very Compact Hardware Implementation of the AES Algorithm.
- Author
-
Abdullah Haroon Rasheed, Muhammad Essam, Umair Khalid, Shoab Ahmed Khan, and Sheikh Muhammad Farhan
- Published
- 2006
5. Physical validation of simulators in Computer Graphics: A new framework dedicated to slender elastic structures and frictional contact
- Author
-
Abdullah Haroon Rasheed, Raphaël Charrondière, Sébastien Neukirch, Florence Bertails-Descoubes, Mickaël Ly, Arnaud Lazarus, Victor Romero, ModELisation de l'apparence des phénomènes Non-linéaires (ELAN), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Capture and Analysis of Shapes in Motion (MORPHEO), Institut Jean Le Rond d'Alembert (DALEMBERT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), This work was supported in part by the ERC grant GEM (StG-2014-639139)., and European Project: 639139,H2020 ERC,ERC-2014-STG,GEM(2015)
- Subjects
Coupling ,Experimental validation ,Bending (metalworking) ,Computer science ,Feature film ,020207 software engineering ,02 engineering and technology ,Animation ,[PHYS.MECA.MSMECA]Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph] ,01 natural sciences ,Computer Graphics and Computer-Aided Design ,Dry frictional contact ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,010305 fluids & plasmas ,Computer graphics ,Set (abstract data type) ,Slender elastic structures ,Code benchmarking ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Elasticity (economics) ,010306 general physics ,Simulation ,ComputingMethodologies_COMPUTERGRAPHICS - Abstract
International audience; We introduce a selected set of protocols inspired from the Soft Matter Physics community in order to validate Computer Graphics simulators of slender elastic structures possibly subject to dry frictional contact. Although these simulators were primarily intended for feature film animation and visual effects, they are more and more used as virtual design tools for predicting the shape and deformation of real objects; hence the need for a careful, quantitative validation. Our tests, experimentally verified, are designed to evaluate carefully the predictability of these simulators on various aspects, such as bending elasticity, bend-twist coupling, and frictional contact. We have passed a number of popular codes of Computer Graphics through our benchmarks by defining a rigorous, consistent, and as fair as possible methodology. Our results show that while some popular simulators for plates/shells and frictional contact fail even on the simplest scenarios, more recent ones, as well as well-known codes for rods, generally perform well and sometimes even better than some reference commercial tools of Mechanical Engineering. To make our validation protocols easily applicable to any simulator, we provide an extensive description of our methodology, and we shall distribute all the necessary model data to be compared against.
- Published
- 2021
- Full Text
- View/download PDF
6. A Visual Approach to Measure Cloth-Body and Cloth-Cloth Friction
- Author
-
Stefanie Wuhrer, Victor Romero, Abdullah Haroon Rasheed, Florence Bertails-Descoubes, Arnaud Lazarus, Jean-Sébastien Franco, Capture and Analysis of Shapes in Motion (MORPHEO), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), ModELisation de l'apparence des phénomènes Non-linéaires (ELAN), Sorbonne Université (SU), and European Project: 639139,H2020 ERC,ERC-2014-STG,GEM(2015)
- Subjects
Friction ,02 engineering and technology ,Measure (mathematics) ,Inverse Problem ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Visual approach ,Deep Learning ,Artificial Intelligence ,0202 electrical engineering, electronic engineering, information engineering ,Computer vision ,Computer Simulation ,Protocol (object-oriented programming) ,business.industry ,Applied Mathematics ,Deep learning ,Work (physics) ,Friction Estimation ,Cloth Simulation ,Material Estimation ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Inverse problem ,[PHYS.MECA.MSMECA]Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph] ,Computational Theory and Mathematics ,Macroscopic scale ,Test set ,020201 artificial intelligence & image processing ,Computer Vision and Pattern Recognition ,Artificial intelligence ,business ,Software ,Algorithms - Abstract
Measuring contact friction in soft-bodies usually requires a specialised physics bench and a tedious acquisition protocol. This makes the prospect of a purely non-invasive, video-based measurement technique particularly attractive. Previous works have shown that such a video-based estimation is feasible for material parameters using deep learning, but this has never been applied to the friction estimation problem which results in even more subtle visual variations. Because acquiring a large dataset for this problem is impractical, generating it from simulation is the obvious alternative. However, this requires the use of a frictional contact simulator whose results are not only visually plausible, but physically-correct enough to match observations made at the macroscopic scale. In this paper, which is an extended version of our former work A. H. Rasheed, V. Romero, F. Bertails-Descoubes, S. Wuhrer, J.-S. Franco, and A Lazarus, "Learning to measure the static friction coefficient in cloth contact," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 9909-9918, we propose to our knowledge the first non-invasive measurement network and adjoining synthetic training dataset for estimating cloth friction at contact, for both cloth-hard body and cloth-cloth contacts. To this end we build a protocol for validating and calibrating a state-of-the-art frictional contact simulator, in order to produce a reliable dataset. We furthermore show that without our careful calibration procedure, the training fails to provide accurate estimation results on real data. We present extensive results on a large acquired test set of several hundred real video sequences of cloth in friction, which validates the proposed protocol and its accuracy.
- Published
- 2021
- Full Text
- View/download PDF
7. Learning to Measure the Static Friction Coefficient in Cloth Contact
- Author
-
Stefanie Wuhrer, Victor Romero, Arnaud Lazarus, Abdullah Haroon Rasheed, Florence Bertails-Descoubes, Jean-Sébastien Franco, ModELisation de l'apparence des phénomènes Non-linéaires (ELAN), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Capture and Analysis of Shapes in Motion (MORPHEO), Institut Jean Le Rond d'Alembert (DALEMBERT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), European Project: 639139,H2020 ERC,ERC-2014-STG,GEM(2015), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut National Polytechnique de Grenoble (INPG), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
business.industry ,Deep learning ,Measure (physics) ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,020207 software engineering ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Synthetic data ,Visualization ,Data modeling ,Range (mathematics) ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,0202 electrical engineering, electronic engineering, information engineering ,Workbench ,Artificial intelligence ,Static friction coefficient ,business ,Simulation ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
International audience; Measuring friction coefficients between cloth and an external body is a longstanding issue in mechanical engineering , never yet addressed with a pure vision-based system. The latter offers the prospect of simpler, less invasive friction measurement protocols compared to traditional ones, and can vastly benefit from recent deep learning advances. Such a novel measurement strategy however proves challenging , as no large labelled dataset for cloth contact exists, and creating one would require thousands of physics work-bench measurements with broad coverage of cloth-material pairs. Using synthetic data instead is only possible assuming the availability of a soft-body mechanical simulator with true-to-life friction physics accuracy, yet to be verified. We propose a first vision-based measurement network for friction between cloth and a substrate, using a simple and repeatable video acquisition protocol. We train our network on purely synthetic data generated by a state-of-the-art fric-tional contact simulator, which we carefully calibrate and validate against real experiments under controlled conditions. We show promising results on a large set of contact pairs between real cloth samples and various kinds of sub-strates, with 93.6% of all measurements predicted within 0.1 range of standard physics bench measurements.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.