Back to Search Start Over

Learning to Measure the Static Friction Coefficient in Cloth Contact

Authors :
Stefanie Wuhrer
Victor Romero
Arnaud Lazarus
Abdullah Haroon Rasheed
Florence Bertails-Descoubes
Jean-Sébastien Franco
ModELisation de l'apparence des phénomènes Non-linéaires (ELAN)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK)
Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Capture and Analysis of Shapes in Motion (MORPHEO)
Institut Jean Le Rond d'Alembert (DALEMBERT)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
European Project: 639139,H2020 ERC,ERC-2014-STG,GEM(2015)
Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut National Polytechnique de Grenoble (INPG)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Source :
CVPR 2020-IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2020-IEEE Conference on Computer Vision and Pattern Recognition, Jun 2020, Seattle, United States. pp.9909-9918, ⟨10.1109/CVPR42600.2020.00993⟩, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), The Conference on Computer Vision and Pattern Recognition, The Conference on Computer Vision and Pattern Recognition, Jun 2020, Seattle, United States, CVPR
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; Measuring friction coefficients between cloth and an external body is a longstanding issue in mechanical engineering , never yet addressed with a pure vision-based system. The latter offers the prospect of simpler, less invasive friction measurement protocols compared to traditional ones, and can vastly benefit from recent deep learning advances. Such a novel measurement strategy however proves challenging , as no large labelled dataset for cloth contact exists, and creating one would require thousands of physics work-bench measurements with broad coverage of cloth-material pairs. Using synthetic data instead is only possible assuming the availability of a soft-body mechanical simulator with true-to-life friction physics accuracy, yet to be verified. We propose a first vision-based measurement network for friction between cloth and a substrate, using a simple and repeatable video acquisition protocol. We train our network on purely synthetic data generated by a state-of-the-art fric-tional contact simulator, which we carefully calibrate and validate against real experiments under controlled conditions. We show promising results on a large set of contact pairs between real cloth samples and various kinds of sub-strates, with 93.6% of all measurements predicted within 0.1 range of standard physics bench measurements.

Details

Language :
English
ISBN :
978-1-72817-168-5
ISBNs :
9781728171685
Database :
OpenAIRE
Journal :
CVPR 2020-IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2020-IEEE Conference on Computer Vision and Pattern Recognition, Jun 2020, Seattle, United States. pp.9909-9918, ⟨10.1109/CVPR42600.2020.00993⟩, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), The Conference on Computer Vision and Pattern Recognition, The Conference on Computer Vision and Pattern Recognition, Jun 2020, Seattle, United States, CVPR
Accession number :
edsair.doi.dedup.....d4341ac157bc7bb9db11b7136b2e29bf
Full Text :
https://doi.org/10.1109/CVPR42600.2020.00993⟩