1. Three-Dimensional Distribution of Biomass Burning Aerosols from Australian Wildfires Observed by TROPOMI Satellite Observations
- Author
-
Farouk Lemmouchi, Juan Cuesta, Maxim Eremenko, Claude Derognat, Guillaume Siour, Gaëlle Dufour, Pasquale Sellitto, Solène Turquety, Dung Tran, Xiong Liu, Peter Zoogman, Ronny Lutz, Diego Loyola, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), ARIA Technologies, Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania (INGV), Istituto Nazionale di Geofisica e Vulcanologia, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University [Cambridge]-Smithsonian Institution, Minerva University, DLR Institut für Methodik der Fernerkundung / DLR Remote Sensing Technology Institute (IMF), Deutsches Zentrum für Luft- und Raumfahrt [Oberpfaffenhofen-Wessling] (DLR), This work is funded by the Region Ile-de-France in the framework of the Domaine d’Intérêt Majeur Réseau de recherche Qualité de l’air en Ile-de-France (DIM QI2) through the programme Paris Region PhD (PRPHD), ARIA Technologies, the Programme National de Télédétection Spatiale (PNTS, http://programmes.insu.cnrs.fr/pnts (accessed on 20 April 2022), and grant no. PNTS-2016– 02, project 'AEROMETOP'), and the Centre National des Etudes Spatiales (CNES) through the SURVEYPOLLUTION project from TOSCA (Terre Ocean Surface Continental et Atmosphère), and supported by the Centre National de Recherche Scientifique—Institute National de Sciences de l’Univers (CNRS-INSU) and the Université Paris Est Créteil (UPEC).
- Subjects
biomass burning ,aerosol injection height ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Aerosols ,fine particulate matter ,black carbon ,smoke ,aerosol extinction vertical profile ,3D distribution of aerosols ,Australian fire ,TROPOMI ,atmospheric_science ,Sentinel-5P ,General Earth and Planetary Sciences ,Atmospheric Remote Sensing ,Physics::Atmospheric and Oceanic Physics - Abstract
International audience; We present a novel passive satellite remote sensing approach for observing the three-dimensional distribution of aerosols emitted from wildfires. This method, called AEROS5P, retrieves vertical profiles of aerosol extinction from cloud-free measurements of the TROPOMI satellite sensor onboard the Sentinel 5 Precursor mission. It uses a Tikhonov–Phillips regularization, which iteratively fits near-infrared and visible selected reflectances to simultaneously adjust the vertical distribution and abundance of aerosols. The information on the altitude of the aerosol layers is provided by TROPOMI measurements of the reflectance spectra at the oxygen A-band near 760 nm. In the present paper, we use this new approach for observing the daily evolution of the three-dimensional distribution of biomass burning aerosols emitted by Australian wildfires on 20–24 December 2019. Aerosol optical depths (AOD) derived by vertical integration of the aerosol extinction profiles retrieved by AEROS5P are compared with MODIS, VIIRS and AERONET coincident observations. They show a good agreement in the horizontal distribution of biomass burning aerosols, with a correlation coefficient of 0.87 and a mean absolute error of 0.2 with respect to VIIRS. Moderately lower correlations (0.63) were found between AODs from AEROS5P and MODIS, while the range of values for this comparison was less than half of that with respect to VIIRS. A fair agreement was found between coincident transects of vertical profiles of biomass burning aerosols derived from AEROS5P and from the CALIOP spaceborne lidar. The mean altitudes of these aerosols derived from these two measurements showed a good agreement, with a small mean bias (185 m) and a correlation coefficient of 0.83. Moreover, AEROS5P observations reveal the height of injection of the biomass burning aerosols in 3D. The highest injection heights during the period of analysis were coincident with the largest fire radiative power derived from MODIS. Consistency was also found with respect to the vertical stability of the atmosphere. The AEROS5P approach provides retrievals for cloud-free scenes over several regions, although currently limited to situations with a dominating presence of smoke particles. Future developments will also aim at observing other aerosol species.
- Published
- 2022
- Full Text
- View/download PDF