Back to Search Start Over

An adaptive Bayesian inference algorithm to estimate the parameters of a hazardous atmospheric release

Authors :
Christophe Olry
Yves Delignon
François Septier
Armand Albergel
Jacques Moussafir
Patrick Armand
Harizo Rajaona
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
DAM Île-de-France (DAM/DIF)
Direction des Applications Militaires (DAM)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Institut TELECOM/TELECOM Lille1
Institut Mines-Télécom [Paris] (IMT)
ARIA Technologies
Source :
Atmospheric Environment, Atmospheric Environment, Elsevier, 2015, 122, pp.748-762. ⟨10.1016/j.atmosenv.2015.10.026⟩, Atmospheric Environment, 2015, 122, pp.748-762. ⟨10.1016/j.atmosenv.2015.10.026⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; In the eventuality of an accidental or intentional atmospheric release, the reconstruction of the source term using measurements from a set of sensors is an important and challenging inverse problem. A rapid and accurate estimation of the source allows faster and more efficient action for first-response teams, in addition to providing better damage assessment.This paper presents a Bayesian probabilistic approach to estimate the location and the temporal emission profile of a pointwise source. The release rate is evaluated analytically by using a Gaussian assumption on its prior distribution, and is enhanced with a positivity constraint to improve the estimation. The source location is obtained by the means of an advanced iterative Monte-Carlo technique called Adaptive Multiple Importance Sampling (AMIS), which uses a recycling process at each iteration to accelerate its convergence.The proposed methodology is tested using synthetic and real concentration data in the framework of the Fusion Field Trials 2007 (FFT-07) experiment. The quality of the obtained results is comparable to those coming from the Markov Chain Monte Carlo (MCMC) algorithm, a popular Bayesian method used for source estimation. Moreover, the adaptive processing of the AMIS provides a better sampling efficiency by reusing all the generated samples.

Details

Language :
English
ISSN :
13522310 and 18732844
Database :
OpenAIRE
Journal :
Atmospheric Environment, Atmospheric Environment, Elsevier, 2015, 122, pp.748-762. ⟨10.1016/j.atmosenv.2015.10.026⟩, Atmospheric Environment, 2015, 122, pp.748-762. ⟨10.1016/j.atmosenv.2015.10.026⟩
Accession number :
edsair.doi.dedup.....850272f49eb4466d94fdb476ffbaeba1
Full Text :
https://doi.org/10.1016/j.atmosenv.2015.10.026⟩