1. Combining multi-spectral data with statistical and deep-learning models for improved exoplanet detection in direct imaging at high contrast
- Author
-
Flasseur, Olivier, Bodrito, Théo, Mairal, Julien, Ponce, Jean, Langlois, Maud, Lagrange, Anne-Marie, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Models of visual object recognition and scene understanding (WILLOW), Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria), Apprentissage de modèles à partir de données massives (Thoth), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Center for Data Science, New York University [New York] (NYU), NYU System (NYU)-NYU System (NYU), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, The work of OF, ML, and AML was supported in part by the EuropeanResearch Council (ERC) under the European Union’s Horizon 2020 researchand innovation program (COBREX, n° 885593). The work of TB and JP wassupported in part by the Inria/NYU collaboration, the Louis Vuitton/ENS chair on artificial intelligence and the French Agence Nationale de la Recherche (ANR) as part of the Investissements d’avenir program (PRAIRIE 3IAInstitute, n° 19-P3IA-0001). The work of JM was supported in part by theERC (SOLARIS, n° 714381) and by the ANR (3IA MIAI, n° 19-P3IA-0003)., ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019), ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019), European Project: 885593,COBREX, and European Project: 714381,H2020,SOLARIS(2017)
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,FOS: Computer and information sciences ,[PHYS]Physics [physics] ,Computer Science - Machine Learning ,[STAT.AP]Statistics [stat]/Applications [stat.AP] ,Multi-variate data ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Matched filter ,FOS: Physical sciences ,Correlated data ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,Machine Learning (cs.LG) ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,[STAT]Statistics [stat] ,Detection ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,Supervised deep learning ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,[STAT.ME]Statistics [stat]/Methodology [stat.ME] ,[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis, Statistics and Probability [physics.data-an] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Exoplanet detection by direct imaging is a difficult task: the faint signals from the objects of interest are buried under a spatially structured nuisance component induced by the host star. The exoplanet signals can only be identified when combining several observations with dedicated detection algorithms. In contrast to most of existing methods, we propose to learn a model of the spatial, temporal and spectral characteristics of the nuisance, directly from the observations. In a pre-processing step, a statistical model of their correlations is built locally, and the data are centered and whitened to improve both their stationarity and signal-to-noise ratio (SNR). A convolutional neural network (CNN) is then trained in a supervised fashion to detect the residual signature of synthetic sources in the pre-processed images. Our method leads to a better trade-off between precision and recall than standard approaches in the field. It also outperforms a state-of-the-art algorithm based solely on a statistical framework. Besides, the exploitation of the spectral diversity improves the performance compared to a similar model built solely from spatio-temporal data., accepted to EUSIPCO 2023
- Published
- 2023