Back to Search Start Over

Co-designing versatile quadruped robots for dynamic and energy-efficient motions

Authors :
Fadini, Gabriele
Kumar, Shivesh
Kumar, Rohit
Flayols, Thomas
Prete, Andrea
Carpentier, Justin
Souères, Philippe
Équipe Mouvement des Systèmes Anthropomorphes (LAAS-GEPETTO)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Université Toulouse III - Paul Sabatier (UT3)
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH = German Research Center for Artificial Intelligence (DFKI)
University of Trento [Trento]
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)
Département d'informatique - ENS Paris (DI-ENS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
M-RoCK (FKZ 01IW21002) project funded by the German Aerospace Center (DLR) with federal funds from the Federal Ministry of Education and Research
ANR-10-EQPX-4401,ROBOTEX 2.0,ANR-10-EQPX-44-01
ANR-21-ESRE-0015,TIRREX,Infrastructure technologique pour la recherche d'excellence en robotique(2021)
ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019)
European Project: 101070165,AGIMUS
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

This paper presents a bi-level optimization framework to concurrently optimize a quadruped hardware and control policies for achieving dynamic cyclic behaviors. The longterm vision to drive the design of dynamic and efficient robots by means of computational techniques is applied to improve the development of a new quadruped prototype. The scale of the robot and its actuators are optimized for energy efficiency considering a complete model of the motor, that includes friction, torque, and bandwidth limitations. This model is used to optimize the power consumption during bounding and backflip tasks and is validated by tracking the output trajectories on the first prototype iteration. The co-design results show an improvement of up to 87% for a single task optimization. It appears that, for jumping forward, robots with longer thighs perform better, while for backflips, longer shanks are better suited. To understand the trade-off between these different choices, a Pareto set is constructed to guide the design of the next prototype.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..038ce08505b1e5b1633348059004e21b