1. Bullion: A Column Store for Machine Learning
- Author
-
Liao, Gang, Liu, Ye, Chen, Jianjun, and Abadi, Daniel J.
- Subjects
Computer Science - Databases ,Computer Science - Machine Learning - Abstract
The past two decades have witnessed columnar storage revolutionizing data warehousing and analytics. However, the rapid growth of machine learning poses new challenges to this domain. This paper presents Bullion, a columnar storage system tailored for machine learning workloads. Bullion addresses the complexities of data compliance, optimizes the encoding of long sequence sparse features, efficiently manages wide-table projections, and introduces feature quantization in storage. By aligning with the evolving requirements of ML applications, Bullion extends columnar storage to various scenarios, from advertising and recommendation systems to the expanding realm of Generative AI. Preliminary experimental results and theoretical analysis demonstrate Bullion's superior performance in handling the unique demands of machine learning workloads compared to existing columnar storage solutions. Bullion significantly reduces I/O costs for deletion compliance, achieves substantial storage savings with its optimized encoding scheme for sparse features, and drastically improves metadata parsing speed for wide-table projections. These advancements position Bullion as a critical component in the future of machine learning infrastructure, enabling organizations to efficiently manage and process the massive volumes of data required for training and inference in modern AI applications.
- Published
- 2024