1. Reduction theory for singular symplectic manifolds and singular forms on moduli spaces
- Author
-
Matveeva, Anastasiia, Miranda Galcerán, Eva, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
- Subjects
Geometria diferencial ,Differential geometry ,Matemàtiques i estadística::Geometria::Geometria diferencial [Àrees temàtiques de la UPC] ,53 Differential geometry [Classificació AMS] - Abstract
The investigation of symmetries of b-symplectic manifolds and folded-symplectic manifolds is well-understood when the group under consideration is a torus (see, for instance, [GMPS, GLPR,GMW18a]forb-symplecticmanifoldsand [CGP,CM]forfoldedsymplecticmanifolds). However, reduction theory has not been set in this realm in full generality. This is fundamental, among other reasons, to advance in the “quantization commutes with reduction” programme for these manifolds initiated in [GMW18b, GMW21]. In this article, we fill in this gap and investigate the MarsdenWeinstein reductiontheory under generalsymmetriesforgeneralbm-symplecticmanifoldsand other singular symplectic manifolds, including certain folded symplectic manifolds. In this new framework, the set of admissible Hamiltonian functions is larger than the category of smooth functions as it takes the singularities of the differential forms into account. The quasi-Hamiltonian set-up is also considered and brand-new constructions of (singular) quasi-Hamiltonian spaces are obtained via a reduction procedure and the fusion product. MarÍa de Maeztu Program for Centers and Units of Excellence in R&D (proyecto CEX2020-001084-M). La Caixa Incoming 2018 - LCF/BQ/DI18/11660046
- Published
- 2022